Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information – Enhancing the Feasibility of Pd/C-catalyzed Formic Acid Decomposition for Hydrogen Generation – Catalyst Pretreatment, Deactivation, and Regeneration

Axel Kosider,^{†a} Dominik Blaumeiser,^{†b} Simon Schötz,^b Patrick Preuster,^c Andreas Bösmann,^a Peter Wasserscheid,^{a,c} Jörg Libuda^b and Tanja Bauer^{*b}

^aInstitute of Chemical Reaction Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany ^bInterface Research and Catalysis, Erlangen Center for Interface Research and Catalysis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 3, D-91058 Erlangen, Germany ^cForschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy, Egerlandstraße 3, D-91058 Erlangen, Germany

[†] shared first authorship

*corresponding author: Tanja Bauer, tanja.tb.bauer@fau.de

Keywords: formic acid decomposition (FAD), catalyst poisoning, catalyst regeneration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

NMR measurements

Fig. S1: ¹H-NMR.

The chemical shift at 8 ppm belongs to the protons of water. The chemicals shifts around 4.6 ppm belong to the proton of the C-H-group FA or formate that is shifted because of different concentrations.

Catalyst loading

Table S1: Comparison of the catalyst metal loadings of fresh and deactivated Pd/C before and after FAD.

Material	Metal loading / wt%
Fresh Pd/C	4.9
Pd/C after FAD	4.5
Pd/C after regeneration and	4.6
recycling	

Investigation of the BET-surface of the catalysts

Table S2: Comparison of the catalyst BET-surface of fresh and deactivated Pd/C before and after FAD.

Material	BET-surface / m ² g ⁻¹
Fresh Pd/C	662
Pd/C after	630
FAD	

Experimental section on TEM

The TEM measurements were performed with a Philips CM30 transmission electron microscope at the Center for Nanoanalysis and Electron Microscopy (CENEM). We used a voltage of 150 - 300 kV and the particle size distribution was evaluated with the ImageJ software package.¹ To account for deviations, we evaluated 501 particles of the fresh Pd/C catalyst and 1851 particles of the used Pd/C catalyst.

Characterization of the catalysts by TEM before FAD

Fig. S2: TEM of fresh Pd/C before FAD.

Characterization of the catalysts by TEM after FAD

Fig. S3: TEM of deactivated Pd/C after FAD.

Size distribution of the Pd nanoparticles

Fig. S4: Palladium particle size distribution from TEM measurements of a) fresh Pd/C before FAD and b) deactivated Pd/C after FAD.

In Figure S4, the particle size distribution as obtained by TEM is shown for a fresh (Figure S4a) and used Pd/C catalyst (Figure S4b). For the fresh Pd/C sample, the average size distribution was 1.9 ± 0.7 nm. The deactivated catalyst showed an average size distribution of 1.7 ± 0.5 nm. As the size of the Pd clusters remains constant, agglomeration is excluded to cause the deactivation of the Pd/C catalyst during FAD.

DRIFTS measurements on pristine Al₂O₃

Fig. S5 Offset DRIFT spectra recorded during three cycles of Ar, FA, CO, and O₂ dosing with intermediate evacuation on a) O₂-pretreated Al₂O₃ and b) H₂-pretreated Al₂O₃; $m_{cat}^{\circ}=^{\circ}\sim^{\circ}0.1^{\circ}g$; 20vol%°HCOOH; T°=°30°°C; p(Ar)°=°p(CO)°=°p(O₂)°=°1°bar; p(vac)°=°~°1°mbar.

Fingerprint region during FAD

Fig. S6: Time resolved spectra during the evacuation interval in the CO and the fingerprint region.

All cycles including intermediate H₂ treatment

Fig. S7: All dosing cycles of $(O_2+H_2)-Pd/Al_2O_3$ sample; $m_{cat}\circ=\circ\sim\circ0.1\circ g$; 20vol%°HCOOH; $T\circ=\circ30\circ\circ C$; $p(Ar)\circ=\circ p(CO)\circ=\circ p(O_2)\circ=\circ1\circ bar$; $p(vac)\circ=\circ\sim\circ1\circ mbar$.

References

1. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena and K. W. Eliceiri, *BMC Bioinf.*, 2017, **18**, 1-26.