Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Rational engineering of Acinetobacter tandoii glutamate dehydrogenase for

asymmetric synthesis of L-homoalanine through biocatalytic cascades

Liuzhu Wang,[#] Shiqing Diao,[#] Yangyang Sun, Shuiqin Jiang, Yan Liu, Hualei Wang^{*} and Dongzhi Wei^{*}

State Key Laboratory of Bioreactor Engineering, NewWorld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237

[#]Liuzhu Wang and Shiqing Diao contributed equally to this work.

*Corresponding author:

Hua-Lei Wang: hlwang@ecust.edu.cn

**Corresponding author:

Dong-Zhi Wei: dzhwei@ecust.edu.cn

Enzyme	Activity (U/mg)
Acinetobacter tandoii GluDH	57.3 ± 9.1
Cupriavidus necator GluDH	42.5 ± 3.7
Geobacillus thermocatenulatus GluDH	31.4 ± 1.2

Table S1. Enzyme activities of dual cofactor dependent GluDHs towards 2-ketobutyric acid in laboratory.

Table S2. Kinetic paramrters of *At*GluDH towards NADH and NADPH.

	k_{cat} (s ⁻¹)	K _m (mM)	k _{cat} / K _m (mM ⁻¹ s ⁻¹)
NADH ^a	3673.1±121.9	0.52±0.08	7063.65
NADPH ^b	4013.8±208.5	3.87±0.14	1037.16

^a Data for NADH and NADPH was measured with 200 mM NH_4Cl/NH_4OH buffer (pH 9.5), 50 mM 2-ketobutyric acid, 0.01-5 mM NADH or 0.01-30 mM NADPH and at 30°C.

Primer	Sequence (5'-3')
K76G-F	GGT GGC GGCGGTATTCGTTACCAT
K76G-R	TGGTCCACGCGACAAATTATGTTG
K76A-F	GGT GCG GGCGGTATTCGTTACCAT
K76A-R	TGGTCCACGCGACAAATTATGTTG
K76V-F	GGT GTG GGCGGTATTCGTTACCAT
K76V-R	TGGTCCACGCGACAAATTATGTTG
K76L-F	GGT CTG GGCGGTATTCGTTACCAT
K76L-R	TGGTCCACGCGACAAATTATGTTG
K76I-F	GGT ATC GGCGGTATTCGTTACCAT
K76I-R	TGGTCCACGCGACAAATTATGTTG
S355A-F	GTG GCT TACTTCGAGTGGGTTCAA
S355A-R	GGTTACACCGCCAGCATTACAGAG
S355V-F	GTG GTG TACTTCGAGTGGGTTCAA
S355V-R	GGTTACACCGCCAGCATTACAGAG
T180A-F	GTG GCG GGTAAACCTGTACATTTAGGT
T180A-R	TACACCTGTGACAGTATGACCCTT
T180V-F	GTG GTG GGTAAACCTGTACATTTAGGT
T180V-R	TACACCTGTGACAGTATGACCCTT
T180S-F	GTG TCT GGTAAACCTGTACATTTAGGT
T180S-R	TACACCTGTGACAGTATGACCCTT
T180C-F	GTG TGC GGTAAACCTGTACATTTAGGT
T180C-R	TACACCTGTGACAGTATGACCCTT

Table S3. Primers used for site-directed mutagenesis of AtGluDH.

Energy (kcal/mol) ^a	AtGluDH-WT	AtGluDH-K76L/T180C
VDW	-11.32±2.83	-14.18±2.97
EEL	-32.49±8.33	-10.71±8.46
GB	13.51±7.21	-5.77±7.14
GBSURF	-2.99±0.07	-3.09±0.005
GBGAS	-43.81±8.09	-24.90±7.90
GBSOLV	10.52±7.21	-8.87±7.13
GBTOT	-33.30±3.06	-33.76±3.76
PB	-20.64±9.44	-44.51±5.15
PBNPOLAR	-13.62±0.24	-13.74±0.15
PBDISPER	20.52±0.62	20.71±0.62
PBGAS	-43.81±8.09	-24.90±7.90
PBSOLV	-13.75±9.73	-37.54±5.21
РВТОТ	-57.56±10.16	-62.44±6.81

Table S4. Binding free energy analysis using the Molecular Mechanics Poisson Boltzmann (Generalized Born) surface area method.

^a VDW: van der Waals energy. EEL: energy of electrostatic. GBTOT/PBTOT: final binding free energy.

Figure S1. (A) Enzyme inactivation assay at different temperatures for 12 h. (B) Time courses of thermal inactivation at 50°C. Purified *At*GluDH-WT was incubated at a certain temperature for a set time, and then added into the reaction mixure. A 200 μ L-scale reaction mixture containing a certain amount of purified *At*GluDH-WT, 2-ketobutyric acid (50 mM), 0.1 mM NADH, 200 mM NH₄Cl/NH₄OH buffer (pH 9.5). Then, the activity was measured by monitoring the absorbance at 340 nm (ϵ =6220 M⁻¹ cm⁻¹) at 30°C.

Figure S2. Reaction curve at different pH. A 20 mL-scale reaction mixture contained *Ec*TD (3 g/L), *At*GluDH-WT (10 g/L) and *Bm*GDH (3 g/L) which were prepared as lyophilized cells, 0.5 M L-threonine, 0.1 mM NADH, 0.6 M glucose, 200mM (NH₄)₃PO₄ buffer (pH 8.0-8.5) or 200 mM NH₄Cl/NH₄OH buffer (pH 9.0-10.0), and at 30°C.

Figure S3. Cascade reaction curves with 1 M L-threonine as substrate. A 20 mL-scale reaction mixture contained *Ec*TD (3 g/L), *At*GluDH-WT (10 g/L) and *Bm*GDH (3 g/L) which were prepared as lyophilized cells, 1 M L-threonine, 0.1 mM NADH, 1.2 M glucose, 200 mM NH_4Cl/NH_4OH buffer (pH 9.5), and at 30°C. Error bars represent the standard deviation of three independent experiments.

Figure S4. The conversion of the reductive amination of 2-ketobutyric acid by wild type *At*GluDH. A 1 mL-scale reaction mixture contained *At*GluDH-WT (10 g/L) and *Bm*GDH (3 g/L) which were prepared as lyophilized cells, 2-ketobutyric acid (200-1000 mM), 0.1 mM NADH, glucose (1.2 x substate concentration), 200 mM NH_4Cl/NH_4OH buffer (pH 9.5), and at 30°C within 24 h. Error bars represent the standard deviation of three independent experiments.

Figure S5. Homology model of AtGluDH with NAD⁺, α -ketoglutarate and 2-ketobutyric acid. NAD⁺, α -ketoglutarate and 2-ketobutyric acid are shown as sticks.

			·
AtGluDH-A.tandoii LfLeuDH-L.fusiformis CnLeuDH-C.necator PpGluDH-P.putida EcGluDH-E.coli CgGluDH-C.glutanicum PeGluDH-P.entomophila LsGluDH-T.sphaericus GsGluDH-G.stearothermophilus BsGluDH-B.subtilis BmGluDH-B.megaterium CsGluDH-C.symbiosum	26 19 41 46 45 43 54 30 31 33 43	YLEEDLIPFINTIKRPKRALIVDVPIVNDDGSIQHFEGYRVQHNLSRGEG 	GGIRYHPDV GGARMWTYA GGGVRFHDDV GGLRFHPSV GGLRFHPSV GGLRFHPSV GGLRFHPSV GGVRFHPDV GGGIRFHPDV GGGIRFHPDV GGGIRFHPNV GGGIRFAPSV
AtGluDH-A.tandoii LfLeuDH-L.fusiformis CnLeuDH-C.necator PpGluDH-P.putida EcGluDH-E.coli CgGluDH-C.glutamicum PeGluDH-P.entomophila LsGluDH-L.sphaericus GsGluDH-G.stearothermophilus BsGluDH-B.subtilis BmGluDH-B.megaterium CsGluDH-C.symbiosum	86 50 100 103 102 102 100 111 89 90 92 100	ELNEVMAN SAWMTIKTAVLNLPYGGAKGGIRVDPRKLSPRELERLT SEENAIEDALRHARGMTYKNAAACLNLGGGKIVIIGDPFKDKNEMFRAL TLSEVMAN SAWMSYKNAAAVNYPYGGAKGGIRVDPRTLSHAELERLT NLSVLKFNGFEQVFKNALTILPMGGGKGGSDFDPKGKSDAPVMRFC NLSILKFNGFEQFFKNALTILPMGGGKGGSDFDPKGKSDAPVMRFC NLGVKFNGFEQFFKNALTICPMGGGKGGSDFDPKGKSDAPVMRFC NLGVLKFNGFEQFFKNALTSLPMGGGKGGSDFDPKGKSDAPVMRFC NLGVLKFNGFEQFFKNALTSLPMGGGKGGSDFDPKGKSDAPVMRFC NLGVLKFNGFEQFFKNALTSLPMGGGKGGSDFDPKGKSDAPVMRFC NLGVLKFNGFEQFFKNALTSLPMGGGKGGSNFDPKGKSDAPVMRFC NLGVLKFNGFEQFFKNALTSLPMGGGKGGSNFDPKGKSDAPVMRFC NLGVLKFNGFEQFFKNALTGOPIGGGKGGIVCDPRKKSDAPVMRFC NLGVLKFNGFEQFFKNALTGOPIGGGKGGIVCDPRKKSDAPVMRFC NLGVLKFNGFEQFFKNALTGOPIGGGKGGIVCDPRKKSDAPVMRFC NLSIMFNGFEQFKNSLKCGIVDLPYGGGKGGIVCDPRKMSFCFLERLSI TEKEVKALSIWMSLKCGIVDLPYGGGKGGIVCDPRNMSFCFLERLSI NLSIMKFNGFEQFKDSLTTLPMGGAKGSDFDVMKSDSUPWRFC	RRFTTEISPI GRFIQGLNG. RRYTSEINIG. QAFMSELYRH QALMTELYRH QAFMTELYRH RGYVRAISQI RGYVRAISQI QAFMTELYRH
AtGluDH-A.tandoii	142	TGPOIDIPAPDVGTNADIMGWMMDTWSTTKGHTVTGVVVVGKPVHLAGALG	RVRATGREVF
LCFLuDH-L. fusiformis CnLeuDH-C. necator PpGluDH-P. putida EcGluDH-E. coli CgGluDH-E. coli CgGluDH-P. entomophila LsGLuDH-L. sphaericus GsGluDH-G. stearothermophilus BsGluDH-B. subtilis BmGluDH-B. megaterium CsGluDH-C. symbiosum	109 156 159 158 158 156 167 145 146 148 156	RYITAE V GTTVLDMOLIHE	PSPVTAYGVY RHEATGYGVF RPEATGYGLV RTEATGYGLV RTEATGYGCV REFATGYGCV RETATGYGV RETATAKGVT RETATAKGVT RETATAKGVT RETATAKGVT
AtGluDH-A.tandoii LtfLeuDH-L.fusiformis CnLeuDH-C.necator PpGluDH-P.putida EcGluDH-E.coli CgGLUDH-C.glutamicum PeGluDH-P.entomophila LsGLUDH-L.sphaericus GsGluDH-G.stearothermophilus BsGluDH-B.subtilis BmGLuDH-B.megaterium CsGluDH-C.symbiosum	202 156 216 218 217 218 215 227 205 206 208 216	VTGLEVAKKINLALEGSRIAVOGFGNVGSEAAYLEHKANAKVVCVODH RGMKAAAKEAFGSDSLEGLKVSVOGLGNVAYKLCEYLENEGAKLVV.TDH VVGSEAARNIGLEIKGARVAVOGFGNVGAVAAKLPHEAGAKVVAVODH YFGEAMLKRQDKRIDGRVAVSGSGNVAQYAARKVMDLGGKVISLSSS YFVSEMIKAKGESISGOKIIVSGSGNVAQYATEKAOEGLGAVVITASD YFTGEAMLKRHGESISGOKIIVSGSGNVAQYATEKAOEGLGAVVISLSSS YFVSEMIKAKGESISGOKIIVSGSGNVAQYATEKAOEGLGAVVISLSSS YFVSEMIKAKGESISGOKIIVSGSGNVAQYATEKAOOYGAKVVGSS YFVSEMIKAKGISLGARVVVOGFGNAGSYLAKEHDAGAKVVGISD YFVEMLKDVNDSEEKTVVVSGSGNVAQYATEKAOOYGAKVVGSDS ICIREAAKKRGISLGARVVVOGFGNAGSYLAKEHDAGAKVVGISDS ICIREAAKKRGIELOGARVVVOGFGNAGSFLAKEMHDAGAKVVGISDA YVVEAVMKHENDTLVGKTVALAGFGNVAGAKKLAELGAKAVTISSP	IGTIFNADGF (QAAIDRV. RTIFDPAGI STIVAEAGI SGTVVDESGF SGWVHTPNGV SGTUFCEAGI SGTUFCEAGI SGTUFCAGI VGALVDPNGI VGALHDPNGI VGALHDPNGI OGYIVDFGI
AtGluDH-A.tandoii LfLeuDH-L.fusiformis CnLeuDH-C.necator PpGluDH-P.putida EcGluDH-E.coli CgGluDH-C.glutamicum PeGluDH-P.entomophila LsGluDH-L.sphaericus GsGluDH-G.stearothermophilus BsGluDH-B.subtilis BmGluDH-B.megaterium CsGluDH-C.symbiosum	260 213 274 276 275 276 273 285 263 264 266 274	DVKQLQDYVAIHKG.VAGFP.NATVIED.EAFWTVEMDILLA DVPAMMEYASHSG.YVNDF.DAIAVAP.DEIYAQEVDIFSCA DVPAMMEYASHSGT.IEGFR.G.EVLRT.AQFWEVDCDILLA TDA.QWDALMELKNVKRGRISELAGQF.GLEFRKG.QTPWSLPCDIALCA TKE.KLARLIEIKASHDGVVAYAKEF.GLVYLEG.QOPWSLPVDIALCA DVAKEREIKEVRRARVSYYADEVEGATYHTD.GSIWDLKCDIALCA DLDVIKEIKEVRGRISELAGF.GLEFRKG.QTPWSLACDIALCA DLDVIKEIKEVRGRISELAGF.GLEFRKG.QTPWSLACDIALCA DIDVIKEIKEVKGORISTYYSYRPNATFTNGCTGIWTPCDIALCA DIDVILERRDSFGT.VTKLF.K.NTISN.KELLECDILVDA DIDYLDRRDSFGT.VTKLF.N.NTISN.KELLEKDCDILVDA DIDYLDRRDSFGT.VTKLF.N.NTISN.KELLELCDILVDA	LEGQITAER LGAILMDET LEGQITAEN TONELGAED TONELDVDA TONELDVDA TONELNGEN LONEINGES LENQITAEN ISNQITAEN ISNQITAEN TONEINEN TONEINGES
AtGluDH-A.tandoii LfLeuDH-L.fusiformis CnLeuDH-C.necator PpGluDH-P.putida EcGluDH-E.coli CgGluDH-C.glutamicum PeGluDH-P.entomophila LsGluDH-L.sphaericus GsGluDH-G.stearothermophilus BsGluDH-B.subtilis BmGluDH-B.suptilis BmGluDH-C.symbiosum	310 248 323 332 331 330 341 312 313 315 332	A CKITAKUVIEGANGPT.YPEAEDILLO.ROIMIVPDVICONAGGVTV IPOLKAKVIAGSANNOLKDSRHGDYLHE.LGIVYAPDVVINAGGVINV APOLKAKVIAGSANNOLKDSRHGDYLHE.LGIVYAPDVIANAGGVINV APOLKAKVIAGANNPT.TIEAVDIFLD.AGILYAPGKASNAGGVAV ARTLIRNGCICVAEGANNPT.TIEAVDIFLD.AGILYAPGKASNAGGVAV AKUJANGCRFVAEGANNPT.TIEAVDIFLD.AGILYAPGKASNAGGVAV AKUJANGCRFVAEGANNPT.TIEAVDIFE.AGILYAPGKASNAGGVAV ARTLIRNGCICVAEGANNPT.TIEAVDIFE.AGILYAPGKASNAGGVAV ARTLISNGVKAIGEGANNPT.TIEAVDIFE.AGILYAPGKASNAGGVAV ARTLISNGVKAIGEGANNPT.TIEAVDIFE.AGILYAPGKASNAGGVAV ARTLISNGVKAIGEGANNPT.TIEAVDIFE.AGILYAPGKASNAGGVAV ARTLISNGVKAIGEGANNPT.TIEATEILTO.RGILVPDVLASAGGVAV AHNIQASIVVEANNCPT.TIEATKILNE.RGVLLVPDILASAGGVTV AHNIQASIVVEANCPT.TIEATKILNE.RGVLLVPDVLASAGGVTV AHNIQASIVVEANCPT.TIEATKILSE.RGILVPDVLASAGGVTV AHNIQASIVVEANCPT.TIEATRILSE.RGILVPDVLASAGGVTV	SYFEWVQDMA VADELY SYFEWVQDFS GLEMSQNAM SALEMQQNAS SALEMQQNAS SALEMAQDSS SYFEWVQNNQ SYFEWVQNNQ SYFEWVQNNQ SYFEWVQNNQ SYFEWSQNSE

Figure S6. Multiple-sequence alignment of AADHs from some different sources with the help of T-coffee and Espript 3.

Figure S7. (A and B) Relative activity of the mutants of AtGluDH compared to the wild-type protein. Reaction conditions: 200 µL final volume, 200 mM NH₄Cl/NH₄OH buffer (pH 9.5), 0.1 mM NADH, 50 mM 2-ketobutyric acid and at 30°C. Error bars represent the standard deviation of three independent experiments.

Figure S8. (A) Distance analysis between the reactive carbonyl carbon (C2) of the substrate and the hydride donating/accepting carbon (C4) of the nicotinamide group of the coenzyme in MD simulations. (B) RMSD analysis results.

Figure S9. (A) SDS-PAGE of *At*GluDH and mutants. L: cell free extract, N: precipitation, P: pure protein elution fraction, M: marker. (B) SDS-PAGE of the co-expression systems. Co1: *E.coli* cells co-expressing *At*GluDH (K76L/T180C) and *Bm*GDH, Co2: *E.coli* cells co-expressing *At*GluDH (K76L/T180C), *Bm*GDH and *Ec*TD, L: cell free extract, N: precipitation, M: marker. Protein molecular weight: *At*GluDH (46.7 kDa), *Bm*GDH (28.2 kDa), *Ec*TD (56.2 kDa).

Figure S10. (A) HPLC chromatogram of racemic 2-aminobutyric acid. (B) HPLC chromatogram of L-2-aminobutyric acid. (C) HPLC chromatogram of product L-2-aminobutyric acid yielded by *At*GluDH.

Figure S11. NMR spectra of the purified L-homoalanine. (A) ¹H NMR; (B) ¹³C NMR. ¹H NMR (600 MHz, D₂O): δ = 3.71 (td, *J* = 5.8, 2.8 Hz, 1H), 1.89 (m, 2H), 0.97 (td, *J* = 7.6, 1.7 Hz, 3H); ¹³C NMR (150 MHz, D₂O): δ = 174.9, 55.8, 23.7, 8.5.