Dry Reforming of Methane on Bimetallic Pt-Ni@CeO₂ Catalyst: A in situ DRIFTS-MS Mechanistic Study

Electronic Supplementary Information (ESI)

Charaterisation of as-prepared catalysts 1.

In this work, the actual metal loading in all catalysts were measured by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES, Analytik Jena PlasmaQuant PO 9000 Elite), and the results were listed in Table S1. Prior to ICP-OES analysis, the catalyst (~25 mg) was mixed with 12 mL aqua regia and digested in a Milestone ETHOS UP microwave digestion system for 20 min at 220 °C.

Table S1. ICP-OES analysis of the as-synthesised catalysts.							
Catalyst	Actual Pt content	Actual Ni content					
	(wt.%)	(wt.%)					
Ni@CeO ₂	-	1.43					
Pt@CeO ₂	1.52	-					
Pt-Ni@CeO ₂	0.85	0.84					

The pulse H₂ (for Ni@CeO₂ catalyst) and CO chemisorption experiments were performed using the Micromeritics AutoChem II 2920 instrument. The catalyst sample (~200 mg) was pre-treated under He (50 ml min⁻¹) at 200 °C for 30 min and cooled to 50 °C. Then it was heated to 600 °C (10 °C min⁻¹) and held for 1 h in a mixture of 10 vol.% H₂ in Ar (total flowrate at 50 ml min⁻¹), and cooled down in He (50 ml min⁻¹) for degassing before pulsing 10 vol.% H₂ or CO in He (590 µL loop). The amount of chemisorbed H₂ or CO was used to estimate the number of metal active sites on the catalyst with the assumption of H₂ or CO/metal ratio being 1:1. The metal dispersion and metallic surface area of the catalysts were presented in Table S2.

Table S2. Metal dispersion and metallic surface area of the catalysts by H₂ (for Ni@CeO₂ catalyst) and CO pulse chemisorption.

Catalysts	Metal dispersion	Metallic surface area		
	[%]	$[m^2 g_{metal}^{-1}]$		
$Ni(a)CeO_2$	0.9	5.9		
$Pt(\tilde{a})CeO_2$	13.3	32.8		
Pt-Ni@CeO ₂	37.6	92.9		

HRTEM images were collected with an FEI Tecnai G2 F20 electron microscope operated at 200 kV. The sample was prepared by dispersion of the powder catalysts in ethanol with the assistance of sonication, and a drop of the suspension was spread onto a TEM carbon grid. The results were presented in Fig. S1, showing that the size of the metallic phases in the three catalysts are comparable

Fig. S1. TEM images of the as-prepared catalysts: (a) Ni@CeO₂, (b) Pt@CeO₂, and (c) Pt-Ni@CeO₂

In H₂ temperature programmed reduction (TPR) measurements, ~50 mg sample was pre-treated at 250 °C for 30 min under helium (He) flow to remove any adsorbed or chemisorbed H₂O and CO₂, and then cooled down to room temperature (RT). H₂-TPR was carried out under a gas mixture flow of 5%H₂/He and at temperatures of 30–900 °C with a heating rate of 10 °C min⁻¹. The H₂ consumption was continuously monitored by a thermal conductivity detector (TCD). The H₂-TPR profiles of developed catalysts were presented in Fig. S1. Results clearly indicate that the Pt-Ni bimetallic catalyst is much easier to be reduced than Pt or Ni monometallic catalysts. Regarding the reduction peak at >600 °C, it was due to the reduction of ceria support[1].

Fig. S2. H₂-TPR profiles of the as-prepared catalysts.

Fig. S3. Long-term stability of the Pt-Ni@CeO₂ catalyst regarding the CO₂/CH₄ conversions and H₂/CO molar ratio as a function of ToS. (Experimental conditions: feed gas = 45 vol.%CO₂/45 vol.%CH₄/10 vol.%Ar, total flow rate = 60 mL (STP) min⁻¹, temperature = 650 °C)

Catalyst	Total flow rate (mL (STP) min ⁻¹)	Temperature (°C)	CO ₂ Conversion (%)	CH ₄ Selectivity (%)	H ₂ /CO molar ratio (-)	Ref.
PtCo/CeO ₂	80	600	25.5	14.3	-	[2]
PtNi/CeO ₂	90	650	55	50	0.7	[3]
Pt-Ni@CeO ₂	60	650	48	40	0.6	This work

Table S3. Comparison with other catalysts on CeO_2 support for dry reforming of methane reported in the literatures.

Fig. S4. Catalytic performances of developed Ni/CeO₂ and Pt-Ni/CeO₂ catalysts for DRM reaction.

3. Temperature-ramping in situ DRIFTS-MS studies

Figure S5. (a) *In situ* DRIFTS spectra of DRM over the bare CeO_2 support, and (b) corresponding MS signals collected at the exit of the DRIFTS cell during DRM in a temperature range of 50 to 600 °C. (Experimental conditions: feed gas = 10 vol.%CO₂/10 vol.%CH₄/80 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S6. (a) *In situ* DRIFTS spectra of DRM over the bare CeO₂ support, and (b) corresponding MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM at 550 °C. (Experimental conditions: feed gas = $10 \text{ vol.}\%\text{CO}_2/10 \text{ vol.}\%\text{CH}_4/80 \text{ vol.}\%\text{Ar}$, total flow rate = 50 mL (STP) min⁻¹)

5. Fast cycling transient in situ DRIFTS-MS studies

5.1 Feed switch between CO_2 and CO_2/CH_4

Figure S7. *In situ* DRIFTS spectra over the bare CeO₂ support as a function of ToS during DRM switching between CO₂ and CO₂/CH₄ feeds at 550 °C: (a) 1st cycle, and (b) 2nd cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CO₂/10 vol.%CH₄/30 vol.%Kr/50 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S8. MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM switching between CO₂ and CO₂/CH₄ feeds over the bare CeO₂ support at 550 °C: (a) 20 cycles, and (b) 1st-3rd cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CO₂/10 vol.%CH₄/30 vol.%Kr/50 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S9. In situ DRIFTS spectra over the Ni@CeO₂ catalyst during the 1st cycle of DRM switching between CO₂ and CO₂/CH₄ feeds at 550 °C: (a) CO₂ to CO₂/CH₄, and (b) CO₂/CH₄ to CO₂. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CO₂/10 vol.%CH₄/30 vol.%Kr/50 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S10. MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM switching between CO₂ and CO₂/CH₄ feeds over the Ni@CeO₂ catalyst at 550 °C: (a) 20 cycles, and (b) 1st-3rd cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CO₂/10 vol.%CH₄/30 vol.%Kr/50 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S11. In situ DRIFTS spectra over the Pt-Ni@CeO₂ catalyst as a function of ToS during DRM switching between CO₂ and CO₂/CH₄ feeds at 550 °C: (a) 2^{nd} cycle, (b) 10^{th} cycle, and (c) 20^{th} cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CO₂/10 vol.%CH₄/30 vol.%Kr/50 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S12. MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM switching between CO₂ and CO₂/CH₄ feeds over the Pt-Ni@CeO₂ catalyst at 550 °C: (a) 20 cycles, and (b) $1^{st}-3^{rd}$ cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CO₂/10 vol.%CH₄/30 vol.%Kr/50 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S13. *In situ* DRIFTS spectra over the bare CeO_2 support as a function of ToS during DRM switching between CO_2 and CH_4 feeds at 550 °C: (a) 1st cycle, and (b) 2nd cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CH₄/30 vol.%Kr/60 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S14. MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM switching between CO₂ and CH₄ feeds over the bare CeO₂ support at 550 °C: (a) 20 cycles, and (b) 1st-3rd cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CH₄/30 vol.%Kr/60 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S15. In situ DRIFTS spectra over the Ni@CeO₂ catalyst during the 1st cycle of DRM switching between CO₂ and CH₄ feeds at 550 °C: (a) CO₂ to CH₄, and (b) CH₄ to CO₂. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CH₄/30 vol.%Kr/60 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S16. MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM switching between CO₂ and CH₄ feeds over the Ni@CeO₂ catalyst at 550 °C: (a) 20 cycles, and (b) 1st-3rd cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CH₄/30 vol.%Kr/60 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S17. *In situ* DRIFTS spectra over the Pt-Ni@CeO₂ catalyst as a function of ToS during DRM switching between CO₂ and CH₄ feeds at 550 °C: (a) 2^{nd} cycle, (b) 10^{th} cycle, and (c) 20^{th} cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CH₄/30 vol.%Kr/60 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Figure S18. MS signals collected at the exit of the DRIFTS cell as a function of ToS during DRM switching between CO₂ and CH₄ feeds over the Pt-Ni@CeO₂ catalyst at 550 °C: (a) 20 cycles, and (b) $1^{st}-3^{rd}$ cycle. (Experimental conditions: feed gas = 10 vol.%CO₂/90 vol.%Ar and feed gas = 10 vol.%CH₄/30 vol.%Kr/60 vol.%Ar, total flow rate = 50 mL (STP) min⁻¹)

Reference

[1] A. Laachir, V. Perrichon, A. Badri, J. Lamotte, E. Catherine, J.C. Lavalley, J. El Fallah, L. Hilaire, F. Le Normand, E. Quéméré, G.N. Sauvion, O. Touret, Reduction of CeO₂ by hydrogen. Magnetic susceptibility and Fourier-transform infrared, ultraviolet and X-ray photoelectron spectroscopy measurements, Journal of the Chemical Society, Faraday Transactions, 87 (1991) 1601-1609.