Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information TiO₂ with controllable oxygen vacancy for efficient isopropanol degradation: photoactivity and reaction mechanism Shuyang Wu,^{a, b, †}Kana Ishisone,^{c, †}Yuan Sheng,^{a, b} Manoel Y. Manuputty,^{a, b} Markus Kraft,^{b, d} Rong Xu*,^{a, a} b ^a School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore ^b C4T CREATE, National Research Foundation, CREATE Tower 1 Create Way, Singapore 138602, Singapore ^c Department of Materials Science and Engineering, Graduate School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro, Tokyo, 152-8552, Japan ^d Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom [†] These authors contributed equally to this work. Corresponding Author E-mail: rxu@ntu.edu.sg The supporting information contains: Number of pages: 14 Number of figures: 14 Number of tables: 5

46
47 Fig. S1 Schematic illustration of TiO₂ nanoparticles prepared by FSRS method.

- 67 68 Fig. S3 TEM images of (a) TiO_{2-x}-4 min, (b) TiO_{2-x}-8 min and (c) TiO_{2-x}-35 min.

10 nm

69 70 10 nm

10 nn

Fig. S5 (a) XRD patterns, (b) EPR spectra. XPS spectra of (c) Ti 2p and (d) O 1s.

94 Binding energy (eV)
95 Fig. S7 (a) UV-Vis DRS spectra (inset: picture of flame-made samples), (b) Bandgap analysis and (c)
96 Valence band position of flame-made TiO_{2-x} and P25 TiO₂.

105Fig. S9 (a) Photocatalytic IPA degradation, (b) Acetone production, and (c) CO_2 generation over flame-made106 TiO_{2-x} and P25 TiO_2 . (d) Stability test of TiO_{2-x} -20 min (40 mg of TiO_2 , 400 ppm initial IPA concentration,107300 W Xe lamp).

112Time (min)Time (min)113Fig. S10 IPA photodegradation over TiO_{2-x} -20 min with different scavengers. (a) Acetone evolution amount;114(b) CO₂ generation amount (40 mg of TiO_2 , 400 ppm initial IPA concentration, 20% O₂ concentration, 75%115RH, 150 W Xe lamp, > 400 nm).

138Wavenumber (cm⁻¹)Wavenumber (cm⁻¹)139Fig. S14 In situ DRIFTS spectra for TiO_{2-x} -35 min in the dark (a) and (b); under light irradiation (300 W Xe

140 lamp, > 400 nm) (c) and (d). 141

Samples and reaction conditions	IPA amount (mmol)	O ₂ amount (mmol)	H ₂ O amount (mmol)	Molar ratio IPA : O ₂ : H ₂ O
TiO _{2-x} -4 min, 20 vol% O ₂ , RH 0%	18	8929	0	1 : 496 : N/A
TiO _{2-x} -8 min, 20 vol% O ₂ , RH 0%	18	8929	0	1 : 496 : N/A
TiO _{2-x} -20 min, 20 vol% O ₂ , RH 0%	18	8929	0	1 : 496 : N/A
TiO _{2-x} -35 min, 20 vol% O ₂ , RH 0%	18	8929	0	1 : 496 : N/A
P25 TiO ₂ , 20 vol% O ₂ , RH 0%	18	8929	0	1 : 496 : N/A
TiO _{2-x} -20 min, 0 vol% O ₂ , RH 0%	18	0	0	1 : N/A : N/A
TiO _{2-x} -20 min, 5 vol% O ₂ , RH 0%	18	2232	0	1 : 124 : N/A
TiO _{2-x} -20 min, 35 vol% O ₂ , RH 0%	18	15625	0	1 : 868 : N/A
TiO _{2-x} -20 min, 50 vol% O ₂ , RH 0%	18	22322	0	1 : 1240 : N/A
TiO _{2-x} -20 min, 100 vol% O ₂ , RH 0%	18	44645	0	1 : 2480 : N/A
TiO _{2-x} -20 min, 20 vol% O ₂ , RH 25%	18	8929	240	1 : 496 : 13
TiO _{2-x} -20 min, 20 vol% O ₂ , RH 50%	18	8929	480	1:868:27
TiO _{2-x} -20 min, 20 vol% O ₂ , RH 75%	18	8929	720	1:868:40

Table S2. The specific surface area (SSA), phase composition and electronic properties of flame-made TiO_2 .

 $_{\rm x}$ samples and P25.

Sample	$\frac{\text{SSA}}{1} (\text{m}^2 \text{ g}^-)$	Rutile content (%)	CB potential (eV)	VB potential (eV)	Bandgap energy (eV)
TiO _{2-x} -4 min	110.7	74.4	-0.25	2.60	2.85
TiO_{2-x} -8 min	127.4	72.3	-0.28	2.63	2.91
TiO_{2-x} -20 min	130.8	78.5	-0.27	2.68	2.95
TiO_{2-x} -35 min	121.3	76.7	-0.32	2.68	3.0
P25 TiO ₂	50.0	19.8	-0.49	2.71	3.2

Table S3. Quantitative defects analysis of flame-made TiO_{2-x} using TPO measurement.

	Sample	$O_2 con$	sumption	n (μmol g ⁻¹)		x (TiO _{2-x})		
		P1	P2	P3	P4			
	4 min	250	89	98	277	0.114		
	8 min	170	143	125	321	0.121		
	20 min	107	89	196	259	0.104		
	35 min	36	54	36	143	0.043		
	P25	24	0	24	0	0.008		
160								
161								
162								
163								
164								
165								
167								
168								
169								
170								
171 172 173	Table S4.sources.	Photoca	talytic a	ctivity of IP	PA deg	gradation over flar	ne-made TiO_{2-x} and	P25 with different light
	Sample		1	Visible light irradiation		ation	UV-Vis irradiation	1
			l i	Mineralizati in 6 h (%)	on	CO_2 production rate (ppm h ⁻¹)	Mineralization in 70 min (%)	CO_2 production rate (ppm h ⁻¹)

Sample	Visible light irradiation		UV-Vis irradiation		
	Mineralization in 6 h (%)	CO ₂ production rate (ppm h ⁻¹)	Mineralization in 70 min (%)	CO ₂ production rate (ppm h ⁻¹)	
TiO _{2-x} -4 min	4.1	8.2	12.2	125.1	
TiO _{2-x} -8 min	20.8	41.7	79.6	818.6	
TiO _{2-x} -20 min	22.7	45.4	98.8	990	
TiO_{2-x} -35 min	17.9	35.9	66.3	682.3	
P25 TiO ₂	8.8	17.5	53.2	546.8	

176	Table S5. Assignments of the IR bands in the spectra of the surface species on TiO ₂ .
177	

Vibration mode	Wavenumber (cm ⁻¹)	Species	
Vas CH ₃	2979, 2971	IPA	
v _{s CH3}	2931, 2866		
<i>v</i> _{s C - Н}	2887		
$\delta_{\mathrm{as}\mathrm{CH}_3}$	1470, 1465, 1462, 1450		
$\delta_{\rm sCH_3}$	1383		
γ _{C - H}	1343		
$\delta_{ m OH}$	1302, 1296, 1252		
^v с - с	1165		
<i>v</i> _C - 0	1135		
ν _{C - C} γ _{CH3}	1088, 1072		
$v_{\rm C} = 0$	1701, 1699	Acetone	
$\delta_{ m sCH_3}$	1387		
v _{as COO}	1553, 1550, 1565	Formate	
$ ho_{ m COO}$	1412		
$\delta_{ m C-H}$	1378		
v _{s COO}	1360		
$v_{\rm as \ COO}$	1535	Acetate	
v _{s COO}	1443, 1450		