Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Formation, dynamics, and long-term stability of Mn- and Fe-promoted Rh/SiO₂ catalysts in CO hydrogenation

Phil Preikschas, *,^a Julia Bauer,^a Kristian Knemeyer,^a Raoul Naumann d'Alnoncourt, *,^a Ralph Kraehnert,^a and Frank Rosowski ^{a,b}

^a BasCat, UniCat BASF JointLab, Technische Universität Berlin, Hardenbergstraße 36, Sekr. EW-K01, 10623 Berlin ^b BASF SE, Process Research and Chemical Engineering, Heterogeneous Catalysis, Carl-Bosch-Straße 38, 67056 Ludwigshafen

Corresponding Authors

*Email: r.naumann@bascat.tu-berlin.de, p.preikschas@bascat.tu-berlin.de

Table of Contents

Figure S1. Rh 3d XPS spectra	4
Table S1. Rh 3d, Mn 2p, and Fe 2p binding energy shifts	5
Figure S2. Fe 2p XPS spectra	6
Figure S3. Overview HAADF-STEM images and particle size distributions	7
Figure S4. STEM-EDX analysis of reduced Rh/SiO ₂	8
Figure S5. STEM-EDX analysis of reduced RhMn/SiO ₂	9
Figure S6. STEM-EDX analysis of RhMn/SiO ₂ after long-term catalytic study	10
Figure S7. STEM-EDX analysis of reduced RhFe/SiO ₂	11
Figure S8. STEM-EDX analysis of RhFe/SiO ₂ after long-term catalytic study	
Figure S9. STEM-EDX difference maps of RhFe/SiO ₂ after long-term catalytic study	13
Figure S10. Additional STEM-EDX analysis of RhFe/SiO ₂ after long-term catalytic study	14
Figure S11. Additional STEM-EDX line profile analysis of RhFe/SiO ₂ after catalysis	15
Figure S12. STEM-EDX area-selective analysis of RhFe/SiO ₂ after long-term catalytic study	16
Table S2. Elemental composition of Rh and Fe containing particles from STEM-EDX area-selective anaylsis	16
Figure S13. X-ray diffractograms after long-term catalytic study of Rh/SiO ₂ and RhFe/SiO ₂	17
Figure S14. STEM-EDX analysis of reduced RhMnFe/SiO ₂	
Figure S15. STEM-EDX analysis of RhMnFe/SiO ₂ after long-term catalytic study	19
Figure S16. Linear regression of CO consumption rates within each iso-thermal step	20
Table S3. Activity loss rates from linear regression analysis	20
Figure S17. C 1s XP spectra	21
Figure S18. Si 2p XP spectra	22
Figure S19. O 1s XP spectra	23
Figure S20. XP survey spectrum of calcined Rh/SiO ₂	24
Figure S21. XP survey spectrum of reduced Rh/SiO ₂	24
Figure S22. XP survey spectrum of reduced Rh/SiO ₂ after high temperature investigation	25
Figure S23. XP survey spectrum of Rh/SiO ₂ after long-term study	25
Figure S24. XP survey spectrum of calcined RhMn/SiO ₂	26
Figure S25. XP survey spectrum of reduced RhMn/SiO ₂	26
Figure S26. XP survey spectrum of reduced RhMn/SiO ₂ after high temperature investigation	27
Figure S27. XP survey spectrum of RhMn/SiO ₂ after long-term study	27
Figure S28. XP survey spectrum of calcined RhFe/SiO ₂	
Figure S29. XP survey spectrum of reduced RhFe/SiO ₂	28
Figure S30. XP survey spectrum of reduced RhFe/SiO ₂ after high temperature investigation	29
Figure S31. XP survey spectrum of RhFe/SiO ₂ after long-term study	29
Figure S32. XP survey spectrum of calcined RhMnFe/SiO ₂	30

Figure S33. XP survey spectrum of reduced RhMnFe/SiO ₂	30
Figure S34. XP survey spectrum of reduced RhMnFe/SiO ₂ after high temperature investigation	31
Figure S35. XP survey spectrum of RhMnFe/SiO ₂ after long-term study	31

Figure S1. Rh 3d XP spectra of (a) Rh/SiO₂, (b) RhMn/SiO₂, (c) RhFe/SiO₂, and (d) RhMnFe/SiO₂ in four different states: calcined, reduced, after long-term catalytic study, and after high temperature stability investigation.

Sample	Treatment	Binding energy (eV)			
		Rh 3d 5/2	Mn 2p 3/2	Fe 2p 3/2	
Rh/SiO ₂	calcination	308.6	-	-	
	reduction	307.4	-	-	
	high temperature	307.4	-	-	
	long-term study	307.1	-	-	
RhMn/SiO ₂	calcination	308.8	641.6	-	
	reduction	306.9	641.9	-	
	high temperature	307.3	642.3	-	
	long-term study	307.3	642.3	-	
RhFe/SiO ₂	calcination	308.9	-	710.7	
	reduction	307.4	-	710.3	
	high temperature	307.4	-	710.5	
	long-term study	307.3	-	710.3	
RhMnFe/SiO ₂	calcination	308.9	641.5	710.6	
	reduction	307.4	641.9	710.4	
	high temperature	307.3	642.0	710.7	
	long-term study	307.0	642.2	710.5	

Table S1. Binding energy shifts of promoted and pure Rh/SiO_2 after different treatments.

Figure S2. Fe 2p XP spectra of (a) RhFe/SiO₂ and (b) RhMnFe/SiO₂ in four different states: calcined, reduced, after long-term catalytic study, and high temperature stability investigation.

Figure S3. Overview HAADF-STEM images of Rh/SiO₂, RhMn/SiO₂, RhFe/SiO₂, and RhMnFe/SiO₂ and corresponding particle size distributions.

Figure S4. STEM-EDX analysis of reduced Rh/SiO₂ catalyst: (a) HAADF micrograph, single-element maps (Rh L, Si K, O K), and (b) corresponding EDX spectrum.

Figure S5. STEM-EDX analysis of reduced RhMn/SiO₂ catalyst: (a) HAADF micrograph, single-element maps (Rh L, Si K, O K, Mn K), superimposed map of Rh L and Mn K, and (b) corresponding EDX spectrum.

Figure S6. STEM-EDX analysis of RhMn/SiO₂ catalyst after long-term catalytic study: (a) HAADF micrograph, singleelement maps (Rh L, Si K, O K, Mn K), superimposed map of Rh L and Mn K, and (b) corresponding EDX spectrum.

Figure S7. STEM-EDX analysis of reduced RhFe/SiO₂ catalyst: (a) HAADF micrograph, single-element maps (Rh L, Si K, O K, Fe K), superimposed map of Rh L and Fe K, and (b) corresponding EDX spectrum.

Figure S8. STEM-EDX analysis of RhFe/SiO₂ catalyst after long-term catalytic study: (a) HAADF micrograph, singleelement maps (Rh L, Si K, O K, Fe K), superimposed map of Rh L and Fe K, and (b) corresponding EDX spectrum.

Figure S9. STEM-EDX mapping of RhFe/SiO₂ after long-term catalytic study (54 bar, max. 260 °C; 530 h on stream) within two different domains. Rh L and Fe K EDX signals were used. For additional single-element maps and corresponding EDX spectrum of (a) see Figure S8 and (b) see Figure S10.

Figure S10. Additional STEM-EDX analysis of RhFe/SiO₂ catalyst after long-term catalytic study: (a) HAADF micrograph, single-element maps (Rh L, Si K, O K, Fe K), superimposed map of Rh L and Fe K, and (b) corresponding EDX spectrum.

Figure S11. Additional STEM-EDX line profile analysis of RhFe/SiO₂ catalyst after long-term catalytic study from two different domains. For additional single-element maps and corresponding EDX spectrum of (a) see Figure S8 and (b) see Figure S10.

Figure S12. STEM-EDX area-selective analysis of RhFe/SiO₂ after long-term catalytic study. Investigated areas are highlighted in yellow. Corresponding elemental compositions area provided in Table S2.

Aroa	Composition / atom-%				Dh.Co rotio
Area	Si	0	Rh	Fe	KII:Fe Tallo
Domain 1	31 ± 7	67 ± 9	1.5 ± 0.3	0.5 ± 0.1	3.00
Area #1	19 ± 4	48 ± 7	28 ± 5	4.9 ± 0.9	5.71
Area #2	30 ± 7	63 ± 8	4.4 ± 0.9	2.0 ± 0.4	2.20
Area #3	29 ± 7	66 ± 8	3.0 ± 0.6	1.6 ± 0.3	1.88
Area #4	30 ± 7	67 ± 8	2.6 ± 0.5	0.8 ± 0.2	3.25
Area #5	30 ± 7	65 ± 8	3.5 ± 0.7	1.4 ± 0.3	2.50
Area #6	28 ± 6	60 ± 7	8.6 ± 1.5	3.6 ± 0.6	2.39
Area #7	23 ± 5	52 ± 7	19 ± 3	6.0 ± 1.0	3.17
Domain 2	35 ± 8	64 ± 9	0.8 ± 0.2	0.4 ± 0.1	2.00
Area #1	28 ± 6	53 ± 6	11 ± 2	7.7 ± 1.3	1.42
Area #2	33 ± 8	62 ± 8	2.9 ± 0.5	2.1 ± 0.4	1.38
Area #3	29 ± 7	60 ± 7	6.1 ± 1.1	4.2 ± 0.7	1.45

Table S2. Elemental composition of Rh and Fe containing particles and aggregates from STEM area-selective analysis.

Figure S13. X-ray diffractograms after long-term catalytic study of Rh/SiO₂ (blue) and RhFe/SiO₂ (red) in the region of the (111) reflections. For the full X-ray diffractograms see Figure 1. RhFe reference (green; C25-1408) has been taken from ICDD database. Rh₃Fe reference (orange; 347421) has been calculated from Open Quantum Materials Database (OQMD).

Figure S14. STEM-EDX analysis of reduced RhMnFe/SiO₂ catalyst: (a) HAADF micrograph, single-element maps (Rh L, Si K, O K, Fe K, Mn K), superimposed maps of Rh L, Mn K, and Fe K, and (b) corresponding EDX spectrum.

Figure S15. STEM-EDX analysis of RhMnFe/SiO₂ catalyst after long-term catalytic study: (a) HAADF micrograph, singleelement maps (Rh L, Si K, O K, Fe K, Mn K), superimposed maps of Rh L, Mn K, and Fe K, and (b) corresponding EDX spectrum.

Figure S16. Linear regression for all four catalyst and each temperature step. Fit curves are highlighted in orange. Corresponding activity loss rates are given in Table S3.

Step	Temperature (°C)	Activity loss rate (μmol/s/g _{cal} /h _{τos})			
		Rh	RhMn	RhFe	RhMn
1	260	0.00	0.01	0.00	0.00
2	270	0.00	0.00	0.00	0.00
3	280	0.00	-0.03	0.00	-0.01
4	290	-0.01	-0.07	-0.02	-0.02
5	300	0.00	-0.09	-0.03	-0.05
6	310	-0.01	-0.10	-0.03	-0.08
7	320	-0.01	-0.13	-0.04	-0.08
8	260	0.00	-0.01	0.00	0.00

Table S3. Activity loss rates from linear regression analysis at different temperatures.

Figure S17. C 1s XP spectra of (a) Rh/SiO₂, (b) RhMn/SiO₂, (c) RhFe/SiO₂, and (d) RhMnFe/SiO₂ in four different states: calcined, reduced, after long-term catalytic study, and after high temperature stability investigation.

Figure S18. Si 2p XP spectra of (a) Rh/SiO₂, (b) RhMn/SiO₂, (c) RhFe/SiO₂, and (d) RhMnFe/SiO₂ in four different states: calcined, reduced, after long-term catalytic study, and after high temperature stability investigation.

Figure S19. O 1s XP spectra of (a) Rh/SiO₂, (b) RhMn/SiO₂, (c) RhFe/SiO₂, and (d) RhMnFe/SiO₂ in four different states: calcined, reduced, after long-term catalytic study, and after high temperature stability investigation.

Figure S20. XP survey spectrum of calcined Rh/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S21. XP survey spectrum of reduced Rh/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S22. XP survey spectrum of Rh/SiO₂ catalyst after high temperature investigation. Regions selected for high-resolution spectra are highlighted in blue.

Figure S23. XP survey spectrum of Rh/SiO₂ catalyst after long-term study. Regions selected for high-resolution spectra are highlighted in blue.

Figure S24. XP survey spectrum of calcined RhMn/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S25. XP survey spectrum of reduced RhMn/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S26. XP survey spectrum of RhMn/SiO₂ catalyst after high temperature investigation. Regions selected for high-resolution spectra are highlighted in blue.

Figure S27. XP survey spectrum of RhMn/SiO₂ catalyst after long-term study. Regions selected for high-resolution spectra are highlighted in blue.

Figure S28. XP survey spectrum of calcined $RhFe/SiO_2$ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S29. XP survey spectrum of reduced RhFe/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S30. XP survey spectrum of RhFe/SiO₂ catalyst after high temperature investigation. Regions selected for high-resolution spectra are highlighted in blue.

Figure S31. XP survey spectrum of RhFe/SiO₂ catalyst after long-term study. Regions selected for high-resolution spectra are highlighted in blue.

Figure S32. XP survey spectrum of calcined RhMnFe/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S33. XP survey spectrum of reduced RhMnFe/SiO₂ catalyst. Regions selected for high-resolution spectra are highlighted in blue.

Figure S34. XP survey spectrum of RhMnFe/SiO₂ catalyst after high temperature investigation. Regions selected for high-resolution spectra are highlighted in blue.

Figure S35. XP survey spectrum of RhMnFe/SiO₂ catalyst after long-term study. Regions selected for high-resolution spectra are highlighted in blue.