Supplementary Information

The dynamic behavior of dilute metallic alloy Pd_xAu_{1-x}/SiO₂ raspberry colloid templated catalysts under CO oxidation

Authors: Amanda Filie,^a Tanya Shirman,^a Michael Aizenberg,^a Joanna Aizenberg,^{a,b} Cynthia M. Friend,^{a,b} and Robert J. Madix^{a*}

^a John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.

^b Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

*corresponding author: rmadix@seas.harvard.edu

S.1 Quantification of CO₂ Production Using a GC-TCD

The calibration curve for quantifying the production of CO₂ was generated using a gas tank containing CO₂ diluted in He with a known analytic precision (Airgas, 5% ± 0.05% CO₂, balance He; referred to hereafter as the CO₂/He mixture). The CO₂/He mixture was sent directly to the combined gas chromatograph-thermal conductivity detector (GC-TCD) via a mass flow controller at a total flow rate of 25.0 sccm. The response factor (*m*, Eq. 1) was determined by dividing the known concentration of CO₂ in the calibration mixture (^{*x*_{CO₂,cal}) by the average area under the response curve of the TCD corresponding to the elution of CO₂ from the GC column (*A*_{TCD,cal}). The uncertainty of the response factor (*U*(*m*), Eq. 2) was calculated by error</sup>}

propagation; the error of the response factor was found to be two orders of magnitude lower than the factor itself.

$$m = \frac{x_{CO_2,cal}}{A_{TCD,cal}}$$
 Eq. 1

$$U(m) = m \cdot \sqrt{\left(\frac{U(x_{CO_2, cal})}{x_{CO_2, cal}}\right)^2 + \left(\frac{U(A_{TCD, cal})}{A_{TCD, cal}}\right)^2}$$
Eq. 2

The rate of CO₂ formation ($r_{CO_2,volumetric}$, Eq. 3) was calculated by multiplying the total volumetric flow rate of the reactor feed ($Q_{tot,in}$) and the concentration of CO₂ in the reactor effluent ($r_{CO_2,out}$). The latter quantity was the product of the average area of the CO₂ elution peak of several chromatograms under steady state activity, and the response factor, essentially a rearrangement of Eq. 1.

$$\dot{r}_{CO_2,volumetric} = \dot{Q}_{tot,in} \cdot x_{CO_2, out} = \dot{Q}_{tot,in} \cdot A_{TCD} \cdot m$$
 Eq. 3

The rate of CO₂ produced normalized by the total mass of metal (${}^{\dot{r}_{CO_2,mass normalized}}$, Eq. 4), was calculated using the ideal gas law to convert standard cubic centimeters per minute to micromoles of CO₂ produced per second normalized by the mass of precious metal in the catalyst.

$$\dot{r}_{CO_2,mass\ normalized} = \dot{r}_{CO_2,volumetric} \times \frac{P}{R \cdot T} \times \frac{1}{w_{met} \cdot w_{Pd}}$$
 Eq. 4

where P is atmospheric pressure (101325 Pa),

R is the ideal gas constant (8.314 J/(mol \cdot K)),

T is the standard temperature (298 K),

 W_{met} is the total loading of precious metal on the silica support (weight %), and

 w_{Pd} is the average Pd composition of the bimetallic nanoparticles (weight %).

S.2 Conditioning of Pd_{0.02}Au_{0.98} RCT-SiO₂

The observed activation energy, when increasing from 523 K to 563 K in the initial temperature ramp, agrees with the previous light-off study (Fig. S1). The activation energy of sequential thermal treatments approaches \sim 80 kJ per mole (Table S1) indicating the catalyst reached a conditioned state.

Figure S1. Sequential temperature ramps between 538 K and 553 K revealed the initial activity of the O₂-pretreated 2% PdAu catalyst agreed with the observed "light-off" activity and ultimately converged to a "conditioned state" where the activity at each temperature is reproduced. The previously reported "light-off" activity $(112 \pm 11 \text{ kJ mol}^{-1})$ of the "as-prepared" 2% PdAu catalyst (\diamond) was similar to the initial apparent activation energy $(106 \pm 6 \text{ kJ mol}^{-1})$ of the O₂pretreated 2% PdAu catalyst (\Box). Retracing the temperature downwards (\blacksquare) showed activity was enhanced, resulting in a significantly lower activation energy ($80 \pm 3 \text{ kJ mol}^{-1}$). Repeating this thermal treatment (increasing and decreasing temperature, ∇ and \blacktriangledown , respectively) showed this activity was reproducible and resulted in an activation energy of $81 \pm 4 \text{ kJ}$ per mole. Data for the "as-prepared catalyst" taken from reference 1. Reaction conditions: 523 K \leq temperature \leq 563 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalysts: m_{cat}"Light-off" Activity = 40.0 mg, m_{cat} O₂ Pretreated = 36.0 mg of Pd_{0.02}Au_{0.98} RCT-SiO₂, metal loading = 11.6 wt%.

Table S1. The activation energy over sequential temperature ramps over the O₂-pretreated 2% PdAu for the oxidation of CO, corresponding to the Arrhenius plot in Fig. S1. Reaction conditions: $523 \text{ K} \le \text{temperature} \le 563 \text{ K}$; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalyst: m_{cat} O₂ Pretreated = 36.0 mg of Pd_{0.02}Au_{0.98} RCT-SiO₂, metal loading = 11.6 wt%.

Temperature Ramp	Activation Energy (kJ mol ⁻¹)
Increasing	106 ± 5
Decreasing	80 ± 3
Increasing	63 ± 3
Decreasing	81 ± 4

The activation energies for sequential thermal treatments of the O₂-pretreated 2% PdAu catalyst stabilized under reaction conditions at 553 K (Fig. S2) approaches an activation energy of ~85 kJ per mole (Table S2).

Figure S2. Sequential temperature ramps of the O₂-pretreated 2% PdAu stabilized at 553 K under reaction conditions for ~ 3 h revealed the catalyst reached a "conditioned state," where the activity at each temperature was reproduced regardless of direction of temperature change. The activation energy measured when the reaction temperature was decreased from 553 K to 538 K after stabilizing the catalyst () was found to be 83 ± 3 kJ per mole. Retracing the temperatures upward () and then downward () resulted in the same activity within error suggesting the catalyst reached a "conditioned" state. Reaction conditions: 538 K \leq temperature \leq 553 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalyst: m_{cat} = 36.0 mg of Pd_{0.02}Au_{0.98} RCT-SiO₂, metal loading = 11.6 wt%.

Table S2. The activation energy over sequential temperature ramps over the O₂-pretreated 2% PdAu stabilized at 553 K under reaction conditions, corresponding to the Arrhenius plot in Fig. S2. Reaction conditions: 538 K \leq temperature \leq 553 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalyst: m_{cat} = 36.0 mg of Pd_{0.02}Au_{0.98} RCT-SiO₂, metal loading = 11.6 wt%.

Temperature Ramp	Activation Energy (kJ mol ⁻¹)
Decreasing	83 ± 3
Increasing	90 ± 1
Decreasing	85 ± 4

S.3 Conditioning of Au RCT-SiO₂ Compared to Pd_{0.02}Au_{0.98} RCT-SiO₂

The steady state activity of the Au RCT-SiO₂ catalyst at 553 K after the thermal treatment (Fig. S3) was lower than that of the $Pd_{0.02}Au_{0.98}$ RCT-SiO₂ (Fig. S2). Furthermore, the activation

Figure S3. The activity of the O₂-pretreated Au catalyst exposed to reaction conditions at 553 K for ~ 3 h declined gradually with thermal treatment. The activation energy measured when the reaction temperature was decreased from 553 K to 538 K after attempting to stabilize the catalyst () was found to be 21 ± 2 kJ per mole. Retracing the temperatures upward (), then downward (), and finally upward () showed a decrease in catalyst activity, approaching a conditioned state insensitive to changes in temperatures. Reaction conditions: 538 K ≤ temperature ≤ 553 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalyst: m_{cat} = 40.8 mg of Au RCT-SiO₂, metal loading = 9.2 wt%.

Table S3. The activation energy over sequential temperature ramps over the O₂ pretreated Au RCT-SiO₂ stabilized at 553 K under reaction conditions, corresponding to the Arrhenius plot in Fig. S3. Reaction conditions: 538 K \leq temperature \leq 553 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalyst: m_{cat} = 40.8 mg of Au RCT-SiO₂, metal loading = 9.2 wt%.

Temperature Ramp	Activation Energy (kJ mol ⁻¹)
Increasing	21 ± 2
Decreasing	3 ± 2
Increasing	12 ± 3
Decreasing	4 ± 2

energy for CO oxidation over the Au RCT-SiO₂ approached zero (Table S3), which is different from the case of $Pd_{0.02}Au_{0.98}$ RCT-SiO₂ that approached 85 kJ per mole (Table S2).

S.4 Au RCT-SiO₂ Insensitivity to Temperature: Steady State Activity at 553 K

The conditioned state of the monometallic Au catalyst was reached by initiating reaction conditions at 553 K and cycling the reaction temperature. Although the monometallic Au seemed to approach a steady state activity after 3 h at 553 K (Fig. S4A), catalyst activity gradually declined over time, during which 3 consecutive temperature ramps were conducted. The conditioned state of the Au catalyst exhibited a residual activity that was independent of reaction

Figure S4. The activity of the Au catalyst showed a gradual decline over reaction conditions while that of the 2% PdAu catalyst dependended significantly on temperature. (A) The rate of CO₂ formation over the O₂-pretreated Au catalyst declined steadily at 553 K over 3 h, and further declined over time despites changes in temperature. (B) The rate of CO₂ formation over the O₂-pretreated 2% PdAu catalyst steadily increased at 553 K over 3 h at 553 K and its activity responded to temperature ramps. Reaction conditions: 538 K \leq temperature \leq 563 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalysts: m_{cat} = 40.8 mg of Au RCT-SiO₂, metal loading = 9.2 wt%; m_{cat} = 36.0 mg Pd_{0.02}Au_{0.98} RCT-SiO₂, metal loading = 11.6 wt%.

temperature, unlike the activity of the 2% PdAu that depended on temperature (Fig. S4B).

S.5 Au RCT-SiO₂ Insensitivity to Effects of Reaction Conditions at 553 K

The activity of the monometallic Au catalyst showed no sensitivity to temporary exposures to a CO/He or O_2 /He environment, unlike the 2% PdAu catalyst (Fig. S5).

Figure S5. The O₂-pretreated Au and 2% PdAu catalysts showed very different behavior when subjected to a CO environment. The CO/He environment had no effect on the activity of the Au, whereas a transient enhancing effect was observed for the 2% PdAu catalyst. Reaction conditions: temperature = 553 K; 5% CO, 10% O₂, balanced with He; total flow rate = 25.0 sccm; gas hourly space velocity = 2000 hr⁻¹. Catalysts: m_{cat} = 40.8 mg of Au RCT-SiO₂, metal loading 9.2 wt%; m_{cat} = 40 mg of Pd_{0.02}Au_{0.98} RCT-SiO₂, metal loading = 11.6 wt%.

S.6 Au RCT-SiO₂ Kinetic Orders on CO and O₂

The reaction orders over the monometallic Au catalyst showed a positive fractional order dependence on both CO (Fig. S6A) and O_2 (Fig. S6B).

Figure S6. The reaction order dependence of Au on CO and O₂ were both positive, fractional orders. (A) The reaction order of CO and (B) O₂ were determined by changes in the rate of CO₂ production per mass of metal in Au as the inlet partial pressure of carbon monoxide and oxygen were varied, respectively, at 538 K. Reaction conditions: kinetic studies on CO, 5 - 8% CO, 10% O₂, balanced with He; kinetic studies on O₂, 5% CO, 7 - 10% O₂, balanced with He. Total flow rate of 25.0 sccm; $m_{cat} = 40.8$ mg of Au RCT-SiO₂, metal loading 9.2 wt%.

References

1 M. Luneau, T. Shirman, A. Filie, J. Timoshenko, W. Chen, A. Trimpalis, M. Flytzani-Stephanopoulos, E. Kaxiras, A. I. Frenkel, J. Aizenberg, C. M. Friend and R. J. Madix, *Chem. Mater.*, 2019, **31**, 5759–5768.