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1. General information

All reagents were used as received unless otherwise noted. Commercially available
chemicals were purchased from Alfa Aesar, Sigma-Aldrich, Energy Chemical and Macklin.
The purity of methane is > 99.99%; TFA (Macklin) is 99.9%; TFAA (Energy Chemical) is
99%; K>S,03 (Macklin) is 99.5%. Purification of CuCl: CuCl was dissolved in conc. HCI,
precipitated out with water, filtered, washed with ethanol and ether, and then dried to obtain
purified white powder CuCl. The body of the autoclave is made of titanium, the pressure
gauge and the valve are made of stainless steel (316L). Flash column chromatography was
performed using silica gel (300-400 mesh). '"H NMR spectra were acquired on a Bruker
Ascend™ 400 (at 400 MHz) and are reported relative to SiMes (8 0.00) or the residual
solvents from the deuterium solvents. "*C NMR spectra were acquired on a Bruker Ascend™
400 (at 100 MHz) and are reported relative to CDCIs (6 77.16). NMR acquisitions were
performed at 295 K unless otherwise noted. Abbreviations: s, singlet; d, doublet; t, triplet; q,
quartet, p, pentet; bs, broad singlet; app., approximate peak. The gas compositions were
analyzed by Agilent 7890B gas chromatography equipped with GS-ALUMINA, 8Ft 1/8 2mm
Molsieve 5A 60/80 UM, 2Ft 1/8 2mm Unibeads 1S 60/80 UM and 4Ft 1/8 2mm Unibeads 1S
60/80 UM. FID and TCD detectors were used to detect different gases (CH4, CO,, CO, CH,F>,
CFs;H, CF,4, CoF¢ etc.).

2.1 The Stability of Internal Standard CH:Br; in Reaction Mixture

Benzene was used as the reference to test the stability of CH,Br in the similar reaction
mixture without methane. Three 'H NMR spectra were recorded from the following samples:
(a) benzene (3.79 mmol)/ CH,Br; (4.76 mmol) mixture in TFA/TFAA; (b) the mixture after
adding 10 mmol of K»S,0s, 3 mmol of KF and 0.005 mmol of CuCl and stirring at room
temperature for 5 min; (¢) the above mixture after stirring at room temperature for 24 h. No
obvious change in the ratio of benzene/CH,Br: indicates the stability of CH.Br; in the

reaction mixture at room temperature. The "H NMR spectra are as follow:
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Figure S1."H NMR spectrum of sample a (before adding K»S,0s, KF and CuCl).
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Figure S2."H NMR spectrum of sample b (after adding K»S,0s, KF and CuCl, and

stirring at rt for 5 min).
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Figure S3. 'H NMR spectrum of sample ¢ (after adding K»S,0s, KF and CuCl, and
stirring at rt for 24 h).

2.2 Typical Procedure for Methane Oxidation (Table 3, entry 5)

CuCl (0.005 mmol JOL JOL j\
in 10 pL conc. HCI) Me<o7NCF, FoC” N0 07 CF,
H :H K28208 (10 mmoI) 1 2
H™™H KF (3 mmol) Q

50 barin TFA/TFAA (17.5 mL, 6:1) ~~A
100 mL autoclave gg°C, 20 h AcO s 0" "CF; AiOH A;:OMe

A 100 ml autoclave with PTFE lining was added K,S,Os (10 mmol, 2.703 g), KF (3
mmol, 174 mg). Subsequently TFA (15 mL), TFAA (2.5 mL) and CuCl (0.5 M in conc. HCI,
10 pL, freshly prepared by dissolving 9.9 mg of CuCl in 200 pL conc. HCl with 30 s
sonication) were added. The autoclave was sealed and filled with 50 bar CHs gas. After
stirring for 20 h at 90 °C, the autoclave was cooled with cryostat at -15 °C, then the autoclave
was opened and the internal standard (CH;Br», 70 pL) was added. The mixture was stirred for
2 minutes, then several drops of reaction solution was mixed with CDCl; (1 mL) in an
eppendorf tube and shaken for several seconds. The supernatant isolated by centrifugation
was tested '"H NMR to determine the yields based on the integral of proton of these products
as comparing with the integral of CH.Br; (Figure S4), 1: 7.12 mmol; 2: 0.65 mmol; 3: 0.09
mmol; 4: 0.07 mmol, 5: 0.14 mmol. 1 mL of the reaction mixture were treated with similar
procedure and *C NMR was tested to confirm the formation of MeOTFA (Figure S5).
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Figure S4. 'H NMR spectrum of the reaction mixture of methane oxidation under optimized

reaction conditions.

o VAo —
8C NMR o 22833822 o <
a% T o SS ARG Te3 S
ol = AR CB MM S N <
[ERERERE gt gt =S v
— - — e e - Lol ol ol vy
2 —N L= - |
JOL
HO™ “CF; cocl
3

/ i
""e*oJLc:F3

T T T T T T T T T T T T T T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120 110 1(00 90 80 70 60 30 40 30 20 10 0 -10
£1 (ppm)

Figure S5. *C NMR spectrum of the reaction mixture of methane oxidation under optimized
reaction conditions.
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2.3 Standard Deviation

O 0] O
10 l(JOL??ng] mgll) Meso e, Fiot oo™ cr,
|'|>\H K2S,0g (10 mmol) _ 1 2
soarn  SETEAGTEL 64) peomork
100 mL autoclave gg °C, 20 h ' T ACO 3 0" "CFs A‘ZOH A<5:OMe
Additive: KF
No. 1 2 3 4 5 Sel. of 1 average  Standard Deviation
1 462 044 0.19 0.15 0.14 83.39%
464 046 022 0.17 0.18 81.83% 83.82% 2.23%
3 457 026 0.11 022 0.14 86.23%
Additive: Na;FPOs
No. 1 2 3 4 5 Sel. of 1/% average Standard Deviation
1 2.02 021 0.17 1.03 0.26 54.74%
193 029 0.11 132 035 48.25% 51% 3.36%
3 201 044 02 1.08 0.29 50%
Additive: CsF
No. 1 2 3 4 5 Sel. of 1/% average Standard Deviation
1 3.84 021 021 048 0.32 75.89%
394 0.18 022 042 0.25 78.64% 75.2% 3.84%

3 383 0.2 044 068 0.24 71.06%

The crude NMR spectra of above experiments were attached as follow (Figure S6 ~ Figure
S14).
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Figure S6. '"H NMR spectrum of the reaction mixture of methane oxidation (additive: KF,

No.1).
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Figure S7. '"H NMR spectrum of the reaction mixture of methane oxidation (additive: KF,

No.2).
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Figure S8. '"H NMR spectrum of the reaction mixture of methane oxidation (additive: KF,

No.3).
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Figure S9. '"H NMR spectrum of the reaction mixture of methane oxidation (additive:
Na,FPOs, NO.I).
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Figure S10. '"H NMR spectrum of the reaction mixture of methane oxidation (additive:

Na,FPO;3, No.2).
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Figure S11. '"H NMR spectrum of the reaction mixture of methane oxidation (additive:

Na,FPO3, No.3).
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Figure S12. 'H NMR spectrum of the reaction mixture of methane oxidation (additive: CsF,

No.1).
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Figure S14. 'H NMR spectrum of the reaction mixture of methane oxidation (additive: CsF,

No.3).
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2.4 The Influence of Reagent Purity on Oxidation Efficiency

Table S1. The influence of reagent purity

CuCl (0.005 mmol 1% % 1%
in 10 pL conc. HCI) Me*OJLCF3 |:3CJLO/\OJI\C|:3
H ;H K5S,0g (10 mmol) 1 2
5'; s H KF (3 mmol) - ji
ar in TFA/TFAA (17.5 mL, 6:1
100 mL autoclave gg °C, 20 h( " ) ACO/;O CF3 A‘ZOH A<5:OMe
Yields (mmol)*
entry CuCl
1 2 3 4 5
Energy 99% 7.12 0.65 0.09 0.07 0.14
2 Alfa 99.999% 6.87 0.53 0.09 0.09 0.14
Yields (mmol)*
entry KF
1 2 3 4 5
1 Energy 99% 7.12 0.65 0.09 0.07 0.14
7.00 0.49 0.07 0.07 0.13
2 Alfa 99.99%
7.03 0.36 0.13 0.15 0.19
Yields (mmol)*
entry K»2S,05
1 2 3 4 5
1 Macklin 99.5% 7.12 0.65 0.09 0.07 0.14
2 Aldrich 99.99% 6.89 0.34 0.14 0.22 0.18
3fb.cl Aldrich 99.99% 0.34 0.09 1.24 0.55 0.58

“Determined by '"H NMR spectroscopy (CDCls) using CH,Br, as internal standard. “without
CuCl and KF. “There is an unidentified peak in crude '"H NMR with chemical shift at 3.04

S13/43



2.5 The Oxidation of Methane under Optimized Conditions with extra FeCl;

CuCl (0.005 mmol j\ JOL JOL
in 10 pL conc. HCI) Meso”NeR, Fic” ~0™ 07 “CF,
H :H KZSZOS (10 mmOI) 1 2
H™ H KF (3 mmol) B Q

50 bar in FeCls (1 mmol) ~
100 mL autoclave TFA/§I'FAA(17.5mL, 6:1) AcO™ "O” "CF3  AcOH AcOMe

90°C, 20 h 3 4 5
Following the typical procedure for methane oxidation in 2.2 with extra FeCl; (1 mmol,
162 mg). 'H NMR yields (70 pL of CH,Br; as the internal standard): 1: 3.34 mmol; 2: 0.13
mmol; 3: 0.16 mmol; 4: 2.31 mmol, 5: 0.29 mmol. ), the crude 'H NMR spectra is as follow:
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Figure S15. '"H NMR spectrum of the reaction mixture of methane oxidation under optimized
reaction conditions with extra FeCls (I mmol). (Reaction conditions: 10 mmol of K,S,0s, 3
mmol of KF, 15 mL of TFA, 2.5 mL of TFAA, 1 mmol FeCls, 0.005 mmol CuCl in 10 pL.
conc. HCI, 50 bar CH4 in 100 mL titanium autoclave, 90 °C, 20 h.)

S14/43



2.6 The Oxidation of Methane without CuCl

o) 0 o)
K2S20g (10 mmol) IV"*o)l\a:g F3CJLO/\OJLCF3
HH KF (3 mmol) 1 2
5'(‘)' ] H TFA/TFAA (17.5 mL, 6:1) ji
arin 90°C, 20 h P
100 mL autoclave AcO 5 0" "CF3 AZOH A<5:0Me

Following the typical procedure in 2.2 without adding CuCl (‘'H NMR yields: 1: 0.96
mmol; 2: 0.34 mmol; 3: 0.96 mmol; 4:1.57 mmol, 5: 0.52 mmol), the crude "H NMR is as

follow:
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Figure S16. '"H NMR spectrum of the reaction mixture of methane oxidation without CuCl.
(Reaction conditions: 10 mmol of K»S,0s, 3 mmol of KF, 15 mL of TFA, 2.5 mL of TFAA,
50 bar CHy4 in 100 mL titanium autoclave, 90 °C, 20 h.)
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2.7 Oxidation of Methane in the Presence of TiO; instead of KF

CuCl (0.001 mmol JOL JOL j\
in 10 pL conc. HCI) Me<o-Ncr, Fuc” N0 07 “CF,
H H K,S50s (10 mmol) 1 2
H™ H TiO, (3 mmol) - ©
30barin  TEAITFAA(17.5mL, 6:1) aco ~o ™

100 mL autoclave g0 °C. 20 h CF3  AcOH AcOMe

3 4 5
HNMR 2 58 s g ¢ 2 552
71 i 7 T A
;J J ‘I
508 L 3y
F,C” ~0” ~0” “CF, Me\o)l\c’:3 Me)Lo/\OJLCFa
g 1
™S
Ao e Me” “OH
CDCl, 3 .
CH,Br,
J

Figure S17. "H NMR spectrum of the reaction mixture of methane oxidation in the Presence
of TiO; instead of KF. (Reaction conditions: 10 mmol of K»S,0sg, 3 mmol of TiO,, 0.001
mmol CuCl in 10 pL conc. HCI, 15 mL of TFA, 2.5 mL of TFAA, 30 bar CH4 in 100 mL
titanium autoclave, 90 °C, 20 h). The peak at 3.04 ppm hasn’t been identified after several

attempts.
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2.8 Scale-up reactions

CuCl (0.01 mmol 9] 0] 0O
in 20 pL conc. HCI) Me‘OJLCF E CJLO/\OJLCF
H H KS,0g (20 mmol) 1 3 '3 2 3
H™"H  KF (6 mmol) B 0
50barin  TFATFAA(35mL, 6:1) , o~ op
100 mL autoclave 90 °C, 20 h c 3 AcOH AcOMe

3 4 5

Following the typical procedure in 2.2 with 20 mmol of K,S,0g, 6 mmol of KF, 0.01
mmol of CuCl in 20 pL conc. HCI, 30 mL of TFA, 5 mL of TFAA, 50 bar CH4 in 100 mL
titanium autoclave at 90 °C for 20 h. '"H NMR yields (70 pL of CH,Br, as the internal
standard): 1: 11.48 mmol; 2: 0.3 mmol; 3: 0.08 mmol; 4: 0.58 mmol, 5: 0.5 mmol. ), the crude
"H NMR spectrum is as follow:

o
'HNMR 88 8 g2 558 g
~ © v < o R K] ?
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Figure S18. '"H NMR spectrum of the reaction mixture of methane oxidation (20 mmol of
KsS,0g3).
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CuCl (0.015 mmol ] o] o]
in 30 pL conc. HCI) Me‘oJLCF . CJLO/\OJLCF
H ~H K2SZOS (30 mmol) 1 373 2 3
H™ H KF (9 mmol) - 0
50barin  TFATFAA(37.5mL, 4:1) , O/\OJLCF
100 mL autoclave 90 °C, 20 h ¢ s 3 AiOH AgOMe

Following the typical procedure in 2.2 with 30 mmol of K»S;0s, 9 mmol of KF, 0.015
mmol of CuCl in 30 pL conc. HCI1, 30 mL of TFA, 7.5 mL of TFAA, 50 bar CH4 in 100 mL
titanium autoclave at 90 °C for 20 h. '"H NMR yields (70 puL of CH,Br, as the internal
standard): 1: 15.34 mmol; 2: 0.49 mmol; 3: 0.14 mmol; 4: 0.83 mmol, 5: 0.56 mmol. ), the
crude 'H NMR spectrum is as follow:
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Figure S19. 'H NMR spectrum of the reaction mixture of methane oxidation. (30 mmol of
KsS:0g5).
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CuCl (0.02 mmol 0o 0o

in 40 L conc. HCI) Me‘OJLCF F CJLO/\OJLCF
H H K2S,0g (40 mmol) e 3
H” H KF (12mmol) 0

50 bar in TFA/TFAA (40 mL, 3:1)

~~A
100 mL autoclave 90 °C, 20 h AcO™ 0" "CF3 AcOH AcOMe

3 4 5
Following the typical procedure in 2.2 with 40 mmol of K»S;0s, 12 mmol of KF, 0.02
mmol of CuCl in 40 puL conc. HCI, 30 mL of TFA, 10 mL of TFAA, 50 bar CH4 in 100 mL
titanium autoclave at 90 °C for 20 h. '"H NMR yields (70 pL of CH,Br, as the internal
standard): 1: 9.91 mmol; 2: 0.27 mmol; 3: 0.09 mmol; 4: 4.17mmol, 5: 0.5 mmol. ), the crude
"H NMR spectrum is as follow:

; © ° “ - °
H NMR 3 a8 S E QS G885 g
Ly O v - o [ o o ] o
1 i i N2 i
2
I3 » I3 ’I
o
Me‘oJLca
OHH O
F3CJLOXOJLCF3
j le) T™MS
CDCly o Me O/\OJLCF
OHH O
)Loxo CF )LO‘Me )OL
3 / Me” ~OH
CH,Br, '/ Me)LO/
1 i /
)8 L1 . .l . JLJ___‘K_..__A_.\_MM_“_A_L&____JL..._
Ty b oy —
25 8 £ g 2%
2 = [« H s B
8.0 T.‘O 6. 6‘0 0 -2.15 -Z.‘O 3.‘5 3.‘0 Z.‘é 2.‘0 l.yc’) 1.‘0 0.'5 O.IO —0‘.5

Figure S20. 'H NMR spectrum of the reaction mixture of methane oxidation. (40 mmol of
KsS:0g5).
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2.9 Oxidation of Methane with AcOH and Ac,O as Solvents

Control experiment without methane

CuCl (0.005 mmol
in 10 pL conc. HCI )

K5S,0g (10 mmol) O O HH O
H)EH KF (3 mmol) _ )Lo,Me )LOXOJ\
AcOH (15 mL)

100 OLba“” | Ac,0 (2.5 mL)
mL autoclave 90 °C, 20 h

Following the typical procedure in 2.2 in the presence of AcOH, Ac,O instead of TFA,
TFAA, and without methane (‘"H NMR yields: 5: 0.07 mmol, 14: 0.22 mmol), the crude 'H

NMR spectrum is as follow:

TH NMR

—7.295
—5.736
—4.945
—3.674
—0.000

T™S

cDCly

2 2.00q
0223 (==

T T T T T T T T T T
4.5 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.2

4.0
1 (ppm)

Figure S21. '"H NMR spectrum of the reaction mixture of methane oxidation in the presence
of AcOH, Ac,O instead of TFA, TFAA, and without methane.
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CuClI (0.005 mmol
H in 10 puL conc. HCI)
Kzszog (10 mmol) (0] (o) H H O
H/\;H KF (3 mmol) . M Me M A
AcOH (15 mL)

100 5°Lbarti”| Ac,0 (2.5 mL)
mL autoclave 90 OC, 20 h

Following the typical procedure in 2.2 in the presence of AcOH, Ac,O instead of TFA,
TFAA (‘"H NMR yields: 5: 0.09 mmol, 14: 0.18 mmol), the crude '"H NMR spectrum is as

follow:
H NMR 3 8 g g
T 1 T T
f / ™S
CDCly
OHHO CH,Br, o
)Lo)io )LO,Me
A J D NS S

0.353 =
o7 2.00q
0274 -

T T T T T T T T T
4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.
£1 (ppm)

Figure S22. "H NMR spectrum of the reaction mixture of methane oxidation in the presence
of AcOH, Ac,0 instead of TFA, TFAA.
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2.10 Oxidation of Cyclohexane, 6-a and Adamantane

2.10.1 Oxidation of Cyclohexane

CuCl (0.005 mmol
in 10 puL conc. HCI)
K>S,0g (10 mmol)

O KF (3 mmol) _ ©
TFA (15 mL) o

6 TFAA (2.5 mL) 7
10 mmol 90 °C, 20 h
N, 50 barin

100 mL autoclave

A 100 ml autoclave with PTFE lining was added cyclohexane (10 mmol, 1080 pL),
K>S,05 (10 mmol, 2.703 g), KF (3 mmol, 174 mg), TFA (15 mL), TFAA (2.5 mL), CuCl (0.5
M in conc. HCL, 10 pL, freshly prepared by dissolving 9.9 mg of CuCl in 200 pL conc. HCI
with 30 s sonication). The autoclave was sealed and filled with 50 bar N». After stirring for 20
h at 90 °C, the autoclave was cooled with cryostat at -15 °C. The autoclave was opened and 5
mL CH,Cl, was added to the reaction mixture to form a homogeneous solution because
cyclohexane and benzene do not dissolve well in TFA. The internal standard (CH»Br, 70 pL)
was added and the mixture was stirred for 2 minutes, then several drops of reaction solution
was mixed with CDCIs (1 mL) in an eppendorf tube and shaken for several seconds. The
supernatant isolated by centrifugation was tested '"H NMR to determine the yields (0.95 mmol,
9.5 % NMR yield with 4.00 mmol cyclohexane recovered) based on the integral of proton of
these products as comparing with the integral of CH,Br,. A *C NMR was also recorded to
confirm the formation of benzene.

g

"H NMR

-~7.366
~7.265
—4.938
—0.000

CH,Cl,

™S,
cDCl,

CH,Br,

—n UU_I Il

.00 =

T T T T T T T T T
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5. 4.5 3.0 2.5 2.0 1

4.0 3.5
f1 (ppm)

Figure S23. "H NMR spectrum of the reaction mixture of cyclohexane oxidation.
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8C NMR

163.189
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162.322
161.891

—128.735
118,988

—~116.166
~113.346

N110.525
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\

© cDCly
LU |
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Figure S24.°C NMR spectrum of the reaction mixture of cyclohexane oxidation.

2.10.2 Oxidation of 6-a

CuCl (0.005 mmol
in 10 pL conc. HCI)
K2S,05 (10 mmol)

OTFA
KF (3 mmol) - © + recovery of 6-a
TFA (15 mL)

6-a TF,‘;\A (2.5 mL) 7
10 mmol 90°C, 20 h
N, 50 bar in

100 mL autoclave

A 100 ml autoclave with PTFE lining was added 6-a (10 mmol, 1962 mg), K>S,0s (10
mmol, 2.703 g), KF (3 mmol, 174 mg), TFA (15 mL), TFAA (2.5 mL), CuCl (0.5 M in conc.
HCIL, 10 pL, freshly prepared by dissolving 9.9 mg of CuCl in 200 pL conc. HCI with 30 s
sonication). The autoclave was sealed and filled with 50 bar N,. After stirring for 20 h at 90
°C, the autoclave was cooled with cryostat at -15 °C. The autoclave was opened, the internal
standard (DMA, 93 plL) was added and the mixture was stirred for 2 minutes, then several
drops of reaction solution was mixed with CDCI; (1 mL) in an eppendorf tube and shaken for
several seconds. The supernatant isolated by centrifugation was tested '"H NMR to determine
the yields (5.48 mmol, 54.8 % NMR vyield with 2.49 mmol of 6-a recovered) based on the

integral of proton of these products as comparing with the integral of DMA. The crude 'H
NMR is as follow:
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Figure S25. "H NMR spectrum of the reaction mixture of 6-a oxidation.

2.10.3 Oxidation of Adamantane

CuCl (0.005 mmol
in 10 pL conc. HCI) OTFA
KzSQOB (10 mmol)

OH
OTFA OH
KF (3 mmol) _ NaOH
TFA (15 mL) H,O, THF
9 10 11 12

TFAA (2.5 mL)
8 90°C,20 h
10 mmol
N, 50 bar in

100 mL autoclave

A 100 ml autoclave with PTFE lining was added adamantane 8 (10 mmol, 1.36 g),
K2S,05 (10 mmol, 2.703 g), KF (3 mmol, 174 mg), TFA (15 mL), TFAA (2.5 mL), CuCl (0.5
M in conc. HCL, 10 pL, freshly prepared by dissolving 9.9 mg of CuCl in 200 pL conc. HCI
with 30 s sonication). The autoclave was sealed and filled with 50 bar N,. After stirring for 20
h at 90 °C, the autoclave was cooled with cryostat at -15 °C. then the autoclave was opened
and the internal standard (CH2Br2,70 pL) was added. The mixture was stirred for 2 minutes,
then several drops of reaction solution was mixed with CDCl; (1 mL) in an eppendorf tube
and shaken for several seconds. The supernatant isolated by centrifugation was tested 'H
NMR to determine the yields of 9 (6.07 mmol, 60.7% NMR yield) and 10 (1.86 mmol, 18.6%
NMR yield) which formed as the major products (Figure S26). Then, TFA and TFAA were

evaporated under reduced pressure. 9 and 10 were isolated by flash column chromatography
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over silica gel (hexanes) as a mixture (colorless oil). The trifluoroacetate 9 and 10 were
hydrolyzed with NaOH (34 mmol, 1.36 g) in H,O/THF (25 mL /25 mL) overnight. The
reaction mixture was extracted with CH>Cl, (25 mL x 3). Then the combined organic layer
was washed with brine and dried over anhydrous MgSOs4 and the solvent was evaporated
under reduced pressure. The products was purified by flash column chromatography over
silica gel (30:1 n-pentane/EtOAc eluent) to afford 1-Adamantanol 11 (562 mg, 3.70 mmol,
37% yield) and 2-Adamantanol 12 (168 mg, 1.11mmol, 11.1% yield).

11: '"H NMR (400 MHz, CDCL3) § 2.14 (s, 3H), 1.84(s,1H),1.72-1.68 (m, 6H), 1.62-1.57 (m,
6H).">*C NMR (101 MHz, CDCls) § 68.27, 45.40, 36.16, 30.79.

12: 'H NMR (400 MHz, CDCls) § 3.87 (s, 1H), 2.09-2.05 (m, 2H), 1.89-1.80(m, 6H),
1.72-1.68 (m, 5H), 1.56-1.50 (d, J = 12.7 Hz, 2H).*C NMR (101 MHz, CDCL) & 74.67,
37.72, 36.64, 34.67, 31.14, 27.65, 27.20.

"H NMR

—7.264
—5.180
—4.936
2
~1.763
X1.706
—-0.000

OTFA

OTFA
J7
cDCl ' T™MS
: \ I CH,Br, ﬂ
T
51

4.5 4.
£1 (ppm)

1.86 4 ===
9

o
© .00 =

Figure S26. Crude 'H NMR spectrum of the reaction mixture of adamantane oxidation.
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2.11 Synthesis of 2, 3, 9 and 10 as Reference Compounds

To identify the products of methane oxidation, we synthesized compond 2 and 3 according to

the literature.

2.11.1 Synthesis of 2 as Reference Compound

Compound 2 was prepared according to the reference: P. E. Aldrich, W. A. Sheppard, J. Org.
Chem. 1964, 29, 11.

CH,Cl, o 0o

L~

70 °C, overnight  F,C” ~07 0" “CF,
2

I.-| * CF;COOAg

CHaI, (1 mmol, 268 mg) was added to a stirred solution of CF;COOAg (2.2 mmol, 486
mg) in CH>Cl> (5§ mL) and the mixture was stirred at 70 °C overnight. The reaction mixture
was filtrated through a pad of Celite and concentrated under reduced pressure to afford

compound 2 without further purification.

'H NMR (400 MHz, CDCI3) § 6.13 (s, 2H)."*C NMR (101 MHz, CDCls) § 156.52, 156.07,
155.63, 118.35, 115.51, 112.68, 109.85, 82.03, 53.57.
2.11.2 Synthesis of 3 as Reference Compound

Compound 13 was prepared according to the reference: J. D. Thomas, K. B. Sloan, Synthesis,
2008, 272.

0™ )ol\ Nal, CH,Cl, R )Oj\ CF3COOAg, CH,Cl,_ )OL JOL
—_— ®
L2 * ¢ . 20 h 1”0 70 °C, overnight 00" “CF,
13 3

Nal (33.6 mmol, 5.04 g) was added to a stirred solution of 1,3,5-trioxane (9.33 mmol,
840 mg) in CH,Cl, (60 mL) within a 150 mL sealed tube and the mixture was cooled to 0 °C.
A solution of acetyl chloride (28 mmol, 1.19 mL) in CH>Cl: (25 mL) was added. Then the
tube was covered with aluminum foil while the reaction was stirred at room temperature for
22 h. The mixture was washed with 10% aq Na,S,0s, followed by brine. The organic phase
was then dried over Na,SQOs, filtered and concentrated under vacuum to give crude 13 (3.608
g, yield 64.4%). Then, 13 (2 mmol, 400 mg) was added to a solution of CFz:COOAg (2.5
mmol, 552 mg) in CHCl (5 ml) within a 15 mL sealed tube and the mixture was stirred at 70
°C overnight. The reaction mixture was filtered through a pad of Celite and concentrated
under reduced pressure to afford compound 3 without further purification.'H NMR (400 MHz,
CDCI3) § 5.94 (s, 2H), § 2.18 (s,3H)."*C NMR (101 MHz, CDC13) § 170.39, 169.21, 156.61,
156.18, 118.55, 115.71, 112.88, 110.04, 90.52, 90.21, 89.03, 88.74, 87.56, 81.07, 79.47, 69.39,
53.56, 20.83, 20.56.
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2.11.3 Synthesis of 9 and 10 as Reference Compounds

OH OTFA
@ TFAA
rt, stir o
1 9

1-Adamantanol 11 (10.0 mg) and TFAA (0.5 ml) were added to a 15 mL sealed tube, the
mixture was stirred for 4 hours at room temperature. Then, the mixture was concentrated
under reduced pressure to afford compound 9 (12.8 mg, yield 78.5%) without further

purification.
9: '"H NMR (400 MHz, CDCls) § 2.24 (s, 3H), 2.19 (s, 6H), 1.69 (s, 6H).

OTFA
OH TFAA
rt,stir o

12 10
2-Adamantanol 12 (10.0 mg) and TFAA (0.5 ml) was added to a 15 mL sealed tube, the
mixture was stirred for 4 hours at room temperature. Then,the mixture was concentrated
under reduced pressure to afford compound 10 (14.8 mg, yield 90.7%) without further

purification.
10: '"H NMR (400 MHz, CDCls) 85.14 (s, 1H), 2.12 (s, 2H), 2.03 (d, J = 12.9 Hz, 2H),
1.92 (d, J=13.6 Hz, 4H), 1.79 (d, ] = 13.9 Hz, 4H), 1.62 (d, J = 12.5 Hz, 2H).
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2.12 NMR spectra of Reference Compounds, 11 and 12
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3. The Gas Phase Composition after Oxidation Reaction

All gas samples were tested in the following conditions:

FID detector

Sample inject volume: 1.00 mL; column: GS-ALUMINA (length 50 m, diameter 0.53 mm);
carrier gas: N> (8 mL/min).

TCD detector

Sample inject volume: 0.25 mL; column: 8Ft 1/8 2mm Molsieve 5A 60/80 UM, 2Ft 1/8 2mm
Unibeads 1S 60/80 UM, and 4Ft 1/8 2mm Unibeads 1S 60/80 UM; carrier gas: helium (5
PSI).

The same temperature program was used for both detectors.

The oven temperature was initially kept at 70 °C for 8 min, then heated up to 190 °C (30
°C/min) and kept at 190 °C for 1 min. The FID detector was kept at 250 °C. The TCD detector
was kept at 150 °C. The injection port was kept at 250 °C.

The calibration curve of CO; volume content

The calibration curve of CO, volume content was drawn according to the GC data of
CO,/CHs with different concentrations. The different concentration of CO, in CHs was
prepared as follow: 10 bar of CO» and 10 bar of CH4 were filled into a 100 mL autoclave and
stirred for 30 min. The gas mixture sample was tested on the GC instrument with FID detector
for three times. The average area of CO, was corresponding to 50% volume content. Then
half of the mixture was released when the pressure reduced to 10 bar. Another 10 bar of CHs4
were filled and the mixture was stirred for 30 min and tested for three times on the GC. Then
the average area of CO; was corresponding to 25% volume content. Following the same
procedure, the CO, in the autoclave was diluted to 12.5%, 6.25%, 3.125%, 1.5625%,
0.78125% volume content and the corresponding areas were measured on GC three times for
each sample. Then the calibration curve of CO> volume content was draw according to the

CO; volume content and corresponding average area of each gas sample on GC.
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Figure S27. The calibration curve of CO; volume content (< 6.25% and > 6.25% are

separated).
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FID2 A, Front Signal (20210510-L7-74-5 2021-05-10 08-19-53\B-001-NV-L7-74-5-1.D)
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Figure S28. The Gas chromatogram of CO» in CHs4 (3.125% volume content) for the calibration

curve of CO; volume content.
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The calibration curve of CF;H volume content

The curve was drawn according to the same procedure as COs.
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Figure S29. The calibration curve of CF3;H volume content.
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450 { WVOP
400 4 >

350 avsz
300 4
250 4
200 5
150 4
100 A
%05 \

0 T T * T .

625- CF3H
9,

%

T T T
2 4 6 8 10 12 min|
TCD1 C, AuxDet #1 Signal (20210526-L7-110-6 2021-05-26 05-20-00\B-004-NV-L7-110-6-4.D)

25V 3
450

- .
350 3
300 3
250 4
200 4
150 3

100 5 I
50_

L

Figure S30. The Gas chromatogram of CF3H in CH4 (1.5625% volume content) for the
calibration curve of CF;H volume content.
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The calibration curve of C,F¢ volume content

The curve was drawn according to the same procedure as COs.
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Figure S31. The calibration curve of C;Fs volume content.
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Figure S32. The Gas chromatogram of C;Fs in CH4 (0.390625% volume content) for the
calibration curve of C;Fs volume content.
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Gas Phase Composition Detection on GC after Oxidation Reaction (Table 3, entry 5)

CuCl (0.005 mmol i JOL JOL
in 10 pL conc. HCI) Me*o CF3 FsC o ™o CF,
H H K2S,0g (10 mmol) 1 2
H™ H KF (3 mmol) 0
50 barin  TFA/TFAA (17.5 mL, 6:1) ACO/\OJLCF
100 mL autoclave 90 °C, 20 h 3 AcOH AcOMe
3 4 5
Area Vol. %

CO; 1163 2.45

CF;H 763 1.43

C,Fs 481 0.28
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Figure S33. The Gas chromatogram of gas phase after oxidation reaction (Table 3, entry 5.
Scaled up chromatogram is shown below).
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Some GC Chromatogram of Standard Gases
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Figure S34. The Gas chromatogram of pure CO,.
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Figure S35. The Gas chromatogram of pure CF3H.
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FID2 A, Front Signal (20210421-CH4 2021-04-24 02-28-25\F-003-NV-CH4-3.D)
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Figure S36. The Gas chromatogram of pure CHa.
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Figure S37. The Gas chromatogram of pure CoHse.
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FID2 A, Front Signal (20210505-C2H4 2021-05-05 2046-57\6-003-NV-C2H4-3.0)
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Figure S38. The Gas chromatogram of pure CoHa.
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Figure S39. The Gas chromatogram of pure C2Fe.
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Figure S40. The Gas chromatogram of pure CO.
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Figure S41. The Gas chromatogram of pure CFa.
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FID2 A, Front Signal (20210504-CH2F2 2021-05-04 07-24-24\B-002-NV-CH2F2-2.D)
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Figure S42. The Gas chromatogram of CH,F,. Above: in pure form; Below: diluted in

methane.
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