Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information for:

One-Pot Synthesis of Highly Mesoporous Ni/MgAl₂O₄ Spinel Catalyst for Efficient Steam-Methane Reforming: Influence of Inert Annealing

Hyunjoung Kim^{a,1}, Ahmed Al-Shahat Eissa^{a,b,1}, Seung Bo Kim^a, HongJin Lee^a, Woohyun Kim^c, Dong Joo Seo^c, Kyubock Lee^{a,*} and Wang Lai Yoon^c

- ^a Graduate School of Energy Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- ^b Department of Chemistry, School of Science, South Valley University, Qena 83523, Egypt
- ^c Hydrogen Research Department, Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea

* Corresponding author: kyubock.lee@cnu.ac.kr

¹ These authors contributed equally to this work.

Fig. $S1 - N_2$ adsorption/desorption isotherms (a, b) and BJH pore-size distributions (c, d) of mesoporous Ni/MgAl₂O₄ catalysts subjected to calcination in air for 2.0 h and 4.0 h, before (a, c) and after reduction (b, d).

Fig. S2 – H_2 –TPR of mesoporous Ni/MgAl₂O₄ catalysts subjected to calcination under air for 2.0 h and 4.0 h.

Fig. S3 – Fitted high-resolution XPS spectra of the Ni 2p in the studied catalysts.

Fig. S4– H₂/CO ratios of mesoporous Ni/MgAl₂O₄ catalysts and commercial catalyst at different GHSVs ranging from 10,000 to 40,000 mL g_{cat}^{-1} h⁻¹.

Fig. S5 – CH₄ conversions (a), H₂/CO ratio (b), and carbon balance (c) of mesoporous Ni/MgAl₂O₄ catalysts and commercial catalyst at H₂O/CH₄= 1, *T*= 700 °C, *P*= 1.0 atm., and GHSV= 10,000 mL g_{cat}^{-1} h⁻¹ for 420 min.

	Calcined samples			Reduced samples		
Catalyst	BET Surface Area (m²/g)	Pore Volume (cm³/g)	Pore diameter (nm)	BET Surface Area (m²/g)	Pore Volume (cm³/g)	Pore diameter (nm)
I-NMA	156.17	0.4185	7.65	98.93	0.2454	17.63
O-NMA/Air	211.18	0.4723	8.01	104.37	0.2735	8.48
O-NMA/Inert/Air	253.08	0.5814	6.58	122.49	0.3433	9.36
O-NMA/Air _{4h}	187.49	0.4327	17.08	83.45	0.2517	19.88

Table S1: BET surface area, pore volume, and pore diameter of the studied catalysts.

Catalyst	Ni (wt%)	Mg (wt%)	Al (wt%)
I-NMA	18.1	7.7	34.2
O-NMA/Air	18.3	7.8	33.8
O-NMA/Inert/Air	18.2	7.6	34.4
O-NMA/Air _{4h}	18.3	7.8	34.1

 Table S2: ICP-OES data of the studied catalysts.

Table S3: Binding energies of Ni species in the reduced catalysts.

Catalyst	Binding energy (eV)		
	Ni ⁰	Ni ²⁺	
I-NMA	851.94	855.16	
O-NMA/Air	851.58	855.16	
O-NMA/Inert/Air	851.53	854.83	

Catalyst	Function	Ni wt%	Reaction Temperatur e (°C)	GHSV h ⁻¹	CH ₄ conversion	Referenc e
O-NMA/Inert/Air	SMR	18	800	10,000	97.62	This work
O-NMA/Inert/Air	SMR	18	800	20,000	92.05	This work
O-NMA/Inert/Air	SMR	18	800	30,000	88	This work
Ni/MgAl ₂ O ₄	SMR	10	750	9,600	97	1
NiAl ₂ O ₄	SMR	31	800	12,000	97	2
NiAl ₂ O ₄	SMR	29	700	12,000	91	2
NiAl ₂ O ₄	SMR	15	650	38,400	27	3
NiCaAl ₂ O ₄	SMR	10	850	32,000	73	4
NiAl ₂ O ₄	SMR	10	600	32,000	84	5
Ni/MgAl ₂ O ₄	SMR	15.3	600	48,500	48	6
15Ni/MgAl ₂ O ₄	SMR	15	600	53,400	51	7
Ni/MgAl	SMR	15	700	3,000	75	8

Table S4. Comparison of SMR catalytic activity and stability of our catalyst with that of similar composition reported in literature.

References

- 1) H.-W. Kim, K.-M. Kang, H.-Y. Kwak and J. H. Kim, Chem. Eng. J., 2011, 168, 775–783.
- N. Salhi, A. Boulahouache, C. Petit, A. Kiennemann and C. Rabia, *Int. J. Hydrogen Energy*, 2011, 36, 11433–11439.
- C. Jimenez-Gonzalez, Z. Boukha, B. de Rivas, J. J. Delgado, M. Á. Cauqui, J. R. González-Velasco, J. I. Gutiérrez-Ortiz and R. López-Fonseca, *Appl. Catal. A Gen.*, 2013, 466, 9–20.
- 4) A. Di Giuliano, K. Gallucci, P. Foscolo and C. Courson, *Int. J. Hydrogen Energy*, 2019,
 44, 6461–6480.
- 5) M. Boudjeloud, A. Boulahouache, C. Rabia and N. Salhi, Int. J. Hydrogen Energy, 2019,

44, 9906–9913

- S. Katheria, A. Gupta, G. Deo and D. Kunzru, *Int. J. Hydrogen Energy*, 2016, 41, 14123– 14132.
- V. K. Jaiswar, S. Katheria, G. Deo and D. Kunzru, *Int. J. Hydrogen Energy*, 2017, 42, 18968-18976.
- N. Y. Kim, E.-H. Yang, S.-S. Lim, J. S. Jung, J.-S. Lee, G. H. Hong, Y.-S. Noh, K. Y. Lee and D. J. Moon, *Int. J. Hydrogen Energy*, 2015, 40, 11848–11854.