Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Carbon Nanofiber Supported Ni–ZnO Catalyst for Efficient and Selective Hydrogenation of Pyrolysis Gasoline

Jie Wu,^{†,a,b} Tianrong Li,^{†,a,*} Genping Meng,^a Yongsheng Xiang,^c Jun Hai,^a and Baodui

Wang^{a,*}

^a State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou University, Lanzhou 730000,

China

^b Tianshui Normal University, Tianshui 741099, China

^c Lanzhou Petrochemical Research Center, PetroChina, Lanzhou 730060, China

[†] These authors contributed equally to this work.

* Corresponding authors.

E-mail addresses: litr@lzu.edu.cn (T. Li), wangbd@lzu.edu.cn (B. Wang).

Fig. S1. SEM images of pure MOF-5 (a), Ni–MOF-5_1 (b), Ni–MOF-5_2 (c), Ni–MOF-5_3 (d).

Fig. S2. XRD patterns of simulated MOF-5, Ni–MOF-5_1, and Ni–MOF-5_2 and Ni–MOF-5_3.

Fig. S3. SEM images of Ni–MOF-5_1/PAN (a) and SEM images of the products of Ni– MOF-5_1/PAN calcinated at 450 °C for 2 h (b), and at 500 °C for 1 h (c).

Fig. S4. N₂ adsorption-desorption isotherms and BJH pore size distributions of NiO– ZnO/C_1, NiO–ZnO/C_2, NiO/C and NiO/Al₂O₃.

Fig. S5. PXRD patterns of Ni–ZnO/C_1, Ni–ZnO/C_2, Ni/C, Ni/Al₂O₃, hexagonal structure of ZnO, cubic structure NiO, delta Al₂O₃, and theta Al₂O₃.

Fig. S6. SEM images (a), TEM images (b), high-resolution TEM images (c), and particle size distribution histogram (d) of Ni–ZnO/C_2.

Fig. S7. SEM image (a), TEM image (b), high-resolution TEM image (c), and particle size distribution histogram (d) of Ni/C.

Fig. S8. TEM image (a), high-resolution TEM image (b), and particle size distribution histogram (c) of Ni/Al₂O₃.

Fig. S9. XPS survey spectra of Ni–ZnO/C_1, Ni–ZnO/C_2, Ni/C and Ni/Al₂O₃.

		—		
Material	Feed to MOF Synthesis (mmol)		Ni/Zn	
	Ni	Zn	Molar Katio	
Ni-MOF-5_1	0.76	2.28	1:3	
Ni-MOF-5_2	1.06	1.98	1:2	
Ni-MOF-5_3	1.52	1.52	1:1	

Table S1. Chemical compositions and physical properties of Ni-MOF-5_1, Ni-MOF-5_2,and Ni-MOF-5_3.

Catalysts	Chemical		BET Surface $Area (m^2/q)$	Pore	Pore
	Compositions (wt%)			Size	Volume
	Ni	Zn	Alea (III/g)	(nm)	(cm ³ /g)
Ni-ZnO/C_1	13.2	34.6	96.65	11.21	0.21
Ni-ZnO/C_2	17.2	27.1	49.63	18.96	0.12
Ni/C	20.1	-	29.00	18.50	0.10
Ni/Al ₂ O ₃	13.7	1.36	120.78	12.40	0.39

Table S2. Chemical compositions and physical properties of different catalysts.

.