Supporting Information

Regulating Pd/Al_2O_3 catalyst by $g-C_3N_4$ toward enhanced selectivity of isoprene hydrogenation

Xiang Yu^{a,b#}, Yuqi Zhang^{a#}, Huan Liu^a, Shunqin Liang^c, Limin Sun^c, Xiaoli Hu^c, Weiping Fang^a, Zhou Chen^{a*} and XiaodongYi^{a*}

^a College of Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

^b Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science,

Utrecht University, Utrecht, The Netherlands.

^c Petro China Lanzhou Petrochemical Research Center, Gansu Lanzhou 730000, China.

[#] These authors equally contributed to the paper.

* Corresponding author:

zhouchen@xmu.edu.cn (Zhou Chen),

xdyi@xmu.edu.cn (Xiaodong Yi)

Figure S1. SEM images of (a, b) Al_2O_3 , (c, d) RMS and (e, f) FZC (All of the supports were calcined at 800 °C).

Figure S2. SEM images of (a, b) Pd/Al₂O₃ and (c, d) Pd/Al₂O₃-U7.

Figure S3. N_2 adsorption-desorption isotherms and pore-size distribution curves (insets) of Al_2O_3 and Al_2O_3 -U7.

Figure S4. N_2 adsorption-desorption isotherms and pore-size distribution curves (insets) of Al_2O_3 -T7 and Al_2O_3 -D7.

Figure S5. N_2 adsorption-desorption isotherms and pore-size distribution curves (insets) of RMS and RMS-U7.

Figure S6. N_2 adsorption-desorption isotherms and pore-size distribution curves (insets) of FZC and FZC-U7.

Figure S7. The XRD patterns of Al_2O_3 , Al_2O_3 -U7, Al_2O_3 -T7 and Al_2O_3 -D7.

Figure S8. The XRD patterns of RMS and RMS-U7.

Figure S9. The XRD patterns of FZC and FZC-U7.

Figure S10. The XRD patterns of Pd/Al_2O_3 and Pd/Al_2O_3 -U7.

Figure S11. The XPS spectra of (a) C 1s and (b) N 1s of the $g-C_3N_4$ (prepared by pyrolysis of urea) and Al_2O_3 -U7.

Figure S12. The EDS patterns of (a) Pd/Al_2O_3 and (b) Pd/Al_2O_3 -U7.

Figure S13. The HRTEM images of $g-C_3N_4$.

Figure S14. The UV-vis DRS spectra of Pd/Al₂O₃, Pd/Al₂O₃-U3, Pd/Al₂O₃-U7, Pd/Al₂O₃-U10 and Pd/Al₂O₃-U20.

Figure S15. The digital images of $Pd/Al_2O_3+WO_3$ and $Pd/Al_2O_3-U7+WO_3$ before (left) and after (right) hydrogen treatments.

	BET Surface Area	Pore Volume	Pore Size
Supports	$(m^2 g^{-1})$	$(\mathrm{cm}^3 \mathrm{g}^{-1})$	(nm)
Al ₂ O ₃	177	0.69	10.9
Al ₂ O ₃ -U7	164	0.65	11.0
Al ₂ O ₃ -T7	188	0.68	10.9
Al ₂ O ₃ -D7	168	0.64	11.0
RMS	160	0.62	10.9
RMS-U7	162	0.63	11.1
FZC	119	0.84	22.1
FZC-U7	104	0.78	22.0

 Table S1. Texture properties of the alumina supports.

Samples	Content of Pd (%)		
Pd/Al ₂ O ₃	0.16		
Pd/Al ₂ O ₃ -U7	0.16		

Table S2. The Pd content of Pd/Al_2O_3 and Pd/Al_2O_3 -U7 determined by ICP-OES.

	Atomic percentage (%)				
Samples	sp ² -bonded carbon	sp ² -bonded aromatic N	tertiary N groups	quaternary N bonded three carbon	
Pd/Al_2O_3	-	-	-	-	
Pd/Al ₂ O ₃ -U7	0.17	0.09	0.51	0.40	

Table S3. The deconvolution results of C 1s and N 1s XPS spectra of Pd/Al₂O₃ and Pd/Al₂O₃-U7.

Samples —		Atomic percentage (%)				
	С	Ν	Ο	Al	Pd	
Pd/Al ₂ O ₃	5.23	1.95	51.95	40.64	0.24	
Pd/Al ₂ O ₃ -U7	9.51	2.27	52.83	35.16	0.24	

Table S4. EDS elemental analysis of Pd/Al_2O_3 and Pd/Al_2O_3 -U7.