Supporting Information

Sulfur doped ruthenium nanoparticles as a highly efficient electrocatalyst for hydrogen evolution reaction in alkaline media

Cong Ling, ‡^a Hong-Bao Li, ‡^{b,*} Cheng-Zong Yuan,^a Zhengkun Yang,^b Han-Bao Chong,^a Xiao-Jun

Qian,^c Xiao-Jie Lu,^a Tuck-Yun Cheang^{d,*} and An-Wu Xu^{a,*}

^a Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.

^b Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Graphene Engineering Laboratory. Anhui University, Hefei, Anhui, 230601, China.

^c The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.

^d Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.

*To whom correspondence should be addressed.

Hong-Bao Li; lihb@ahu.edu.cn

Tuck-Yun Cheang; 13631322559@163.com

An-Wu Xu; anwuxu@ustc.edu.cn

‡Cong Ling and Hong-Bao Li contributed equally to this work

Scheme S1 Schematic illustration for the synthetic process of Ru-S catalyst.

Fig. S1 The XRD patterns of as-prepared S-doped ruthenium catalysts. It shows that catalysts with different sulfur-content have the same diffraction peaks. The diffraction peaks can be assigned to Ru with hexagonal phase (JCPDS No. 89-4903).

Fig. S2 The SEM images of as-prepared different sulfur-content catalysts, (a) Ru-S-0, (b) Ru-S-1, (c) Ru-S-2, and (d) Ru-S-3. These samples have a quite uniform morphology with different particle size.

Fig. S3 The TEM images of as-prepared different sulfur-content catalysts, (a) Ru-S-0, (b) Ru-S-1, (c) Ru-S-2 (inset: HR-TEM images), and (d) Ru-S-3 (inset: HR-TEM images).

Fig. S4 Particle size distribution of as-prepared Ru-S-2 catalyst. It possessed crystal size of 8.3 nm in average diameter.

Fig. S5 EDS spectrum of as-prepared Ru-S-2 catalyst, and the corresponding elemental content of Ru, S, O.

Fig. S6 (a), and (b) are TGA curves of as-prepared Ru-S-2 and Ru-S-2/C catalysts at atmosphere with a ramping rate of 10 °C min⁻¹, respectively. The residue is pure RuO_2 metal.

Fig. S7 (a) Ru 3p spectra of Ru-S-2 and (b) S 2p XPS spectra of as-prepared serial S-doped catalyst. Figure (b) showed that Ru-S-2 possessed the highest sulfur content.

Fig. S8 (a) The linear sweep voltammetry (LSV) curves and (b) Tafel curves were obtained over as-prepared catalysts in N_2 -saturated 0.5 M H_2SO_4 solution. The LSV curves and Tafel curves exhibited obvious activity in acidic media.

Fig. S9 (a) The linear sweep voltammetry (LSV) curves and (b) Tafel curves were obtained over as-prepared catalysts in N_2 -saturated 1 M PBS solution. The LSV curves and Tafel curves exhibited obvious activity in the neutral system.

Fig. S10 CV curves of as-prepared S-doped ruthenium catalysts 1.0 M KOH, (a) Ru-S-0, (b) Ru-S-1, (c) Ru-S-2, (d) Ru-S-3.

Fig. S11 (a) The XRD pattern, (b) SEM, (c) TEM, and (d) HRTEM images of Ru-S-2 catalysts after 12 h electrocatalysis for HER in 1.0 M KOH solution.

Fig. S12 (a) Ru 3p, and (b) S 2p XPS spectra of as-prepared Ru-S-2 catalyst after 12 h electrocatalysis for HER in 1.0 M KOH solution.

Fig. S13 HER polarization curves of Ru-S-2 catalyst in pH of 14 with different concentrations of K^+ . The result showed that the activities of Ru-S-2 increased with the addition of K^+ at high current density.

Catalyst	η (@ 10 Tafel Slope		Electrolvte	References	
	mA cm ⁻²)	(mV dec ⁻¹)			
Ru-S-2	10	53	1 М КОН	This work	
Ru-S-2/C	40	56	1 М КОН	This work	
R-TiO ₂ : Ru	150	95 0.1 M KOH		J. Am. Chem. Soc., 2018, 140, 5719.	
RuP ₂ @NPC	~52	69	1 М КОН	Angew. Chem. Int. Ed., 2017, 56, 11559.	
Ru@C ₂ N	17	38	1 М КОН	Nat. Nanotech., 2017, 12, 441.	
Ru/C ₃ N ₄ /C	79	69	0.1 M KOH	J. Am. Chem. Soc., 2016, 138, 16174.	
RuSi	37	-	1 M KOH	Angew. Chem. Int. Ed., 2019, 58, 11409.	
Ru-MoO ₂	29	44	1 М КОН	J. Mater. Chem. A., 2017, 5, 5474.	
RuCo@NC	28	31	1 М КОН	Nat. Commun., 2017, 8, 14969.	
Ru@CN	50	-	0.1 M KOH	Energy Environ. Sci., 2018, 11, 800.	
Co(OH) ₂ /Pt (111)	~248	-	1 М КОН	Nat. Mater., 2012, 11, 550.	
Pt3Ni/NiS	~45	-	0.1 M KOH	Nat. Commun., 2017, 8, 14580.	
Ni-BDT-A	80	70	1 M KOH	Chem., 2017, 3, 122.	
PtNi	65	74	0.1 M KOH	Nat. Commun., 2017, 8, 15131.	
NiS/MoS ₂ /C	117	58	1 М КОН	Electrochim. Acta., 2018, 274, 74.	

Table S1. Summary of some recently reported representative HER electrocatalysts in alkaline electrolytes.

Ni ₂ P/Ni/NF	98	72	1 M KOH	ACS Catal., 2015, 6,
				714.

Table S2. Summary of some recently reported representative HER electrocatalysts in acidic electrolytes.

Catalyst	η (@ 10 mA cm ⁻²)	Tafel Slope (mV dec ⁻¹)	Electrolyte	References
Ru-S-2	54	72	0.5 M H ₂ SO ₄	This work
Ru-S-2/C	95	110	0.5 M H ₂ SO ₄	This work
Ru@CN	126	-	0.5 M H ₂ SO ₄	Energy Environ. Sci., 2018, 11, 800.
RuP@NPC	125	107	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	Adv. Energy Mater., 2018, 8, 1870130.
Pt MLAg	~70	53	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	Sci. Adv.,
NF/N1 foam				2015, 1, 1400268.
CoN _x /C	133	57	0.5 M H ₂ SO ₄	Nat. Commun., 2015, 6, 7992.
CoPS film	128	57	0.5 M H ₂ SO ₄	Nat. Mater., 2015, 14, 1245.
M-MoS ₂	175	41	$0.5 \text{ M H}_2 \text{SO}_4$	Nat. Commun., 2016, 7, 10672.
mPF-MoS ₂	195	-	$0.5 \text{ M H}_2 \text{SO}_4$	Nat. Commun., 2017, 8, 14430.
SV-MoS ₂	170	60	0.5 M H ₂ SO ₄	Nat. Mater., 2016, 15, 364.
CoMoS _x	~207	-	0.1 M H ₂ SO ₄	Nat. Mater., 2016, 15, 197.
Co-NG	147	82	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	Nat. Commun., 2015, 6, 8668.

Catalyst	C _{dl}	Car (mE)	ECSA	$J_{\eta=100~mV}$	RE
Catalyst	(mF cm ⁻²)		(cm ²)	(mA)	K
Ru-S-0	1.85	0.35	8.75	1.65	45
Ru-S-1	27.73	5.44	138	4.68	704
Ru-S-2	40.17	7.87	197	10.1	1005
Ru-S-3	37.01	7.25	181	4.98	923

Table S3. Comparison of electrochemical surface areas (ECSA) and catalytic activities of Ru catalysts at different sulfur content.

 $C_{DL} = C_{dl} * 0.196 \text{ cm}^2$, ECSA = C_{DL}/C_s , $C_s = 0.04 \text{ mF cm}^2$, $J_{\eta=100 \text{ mV}}$ represents the current obtained at overpotential of 100 mV, RF = ECSA/0.196 cm².

Table S4. The absorption energy (E_{abs} , in eV) and dissociation energies (E_{dis} , in eV) of the H₂O on different surfaces: Pt (111), Ru (001), Ru-S + Ru_{site} and Ru-S + S_{site} and the distance (in Å) of the weak interaction between oxygen atom (O) and the mental atom (Pt or Ru).

	Pt (111)	Ru (001)	Ru-S+ Ru _{site}	$Ru-S + S_{site}$
E _{ads} (eV)	-0.22	-0.40	-0.41	-0.52
O-Pt/Ru (Å)	2.42	2.33	2.32	2.30
E _{dis} (eV)	3.47	2.92	2.50	2.38

	Ru	Ru-S	Ru-Se	Ru-Te
Ru-Ru (Å)	2.71	2.69	2.68	2.68
Ru-X (Å)		2.76	2.78	2.78

Table S5. Distance (in Å) between different Ru atoms and between the X atom (X=S, Se, Te) and its surrounding metal atoms.