Supplementary information

Influence of Copper Precursor on the Catalytic

Transformation of Oleylamine during Cu Nanoparticles

Synthesis

Antoine Pesesse,¹ Sophie Carenco^{1,*}

¹ Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu, 75005 Paris, France

E-mail: sophie.carenco@sorbonne-universite.fr

Figure S1: TEM micrograph of *Cu_A* nanoparticles before washing steps.

Figure S2: XRD patterns of several samples of copper nanoparticles Cu_A synthesized with $Cu(OAc)_2$ as precursor. XRD reference pattern for cubic Cu in red (COD number: 9008468) and for cubic Cu₂O in blue (COD number: 1010941) (bottom).

Figure S3: (Top) Molecular structure of oleylamine, (bottom) ¹H NMR spectrum of commercial oleylamine.

Figure S4: (Top) Molecular structure of species detected in the ¹H NMR spectrum. (Bottom) ¹H NMR spectrum of the supernatant of synthesis **A** centrifugated at 9000 RPM during 15 min.

Figure S5: ESI-MS of the supernatant of synthesis **A** centrifuged at 9000 RPM during 15 min. Peaks interpreted are marked with a red letter and their interpretation are given in Table S1.

Entry	Measured Mass	Proposed chemical formula	Corresponding theoritical mass	Proposed ionized structure
А	214.2529	C ₁₄ H ₃₂ N + H ⁺	214.2534	NH₂ + н [⊕]
В	268.2998	C ₁₈ H ₃₈ N+ H ⁺	268.3004	₩ H ₂ + H [⊕]
С	296.3311	C ₂₀ H ₄₂ N+ H ⁺	296.3317	мH₂ + н [⊕]
D	332.2923	C ₂₀ H ₃₉ NO + Na ⁺	332.2929	
E	516.5498	C ₃₆ H ₇₀ N + H⁺	516.5508	·····································
F	559.5920	C ₃₈ H ₇₅ N ₂ + H⁺	559.5930	$HN \sim H^{\odot}$
G	577.6026	C ₃₈ H ₇₅ N ₂ ⁺ + H ₂ O	577.6035	$HN \xrightarrow{CH_3} + H_2O + H^{\odot}$

Table S1: Ionized structure interpreted from mass spectrogram S6.

Figure S6: (Top) Molecular structure of species detected in the ¹H NMR spectrum. (Bottom) ¹H NMR spectrum of the supernatant of synthesis *B* centrifuged at 9000 RPM during 15 min.

Figure S7: ESI-MS of the supernatant of synthesis *B* centrifuged at 9000 RPM during 15 min. Peaks interpreted are marked with a red letter and their interpretation are given in Table S2.

Entry	Measured Mass	Proposed chemical formula	Corresponding theoritical mass	Proposed ionized structure
A	214.2529	$C_{14}H_{31}N + H^+$	214.2534	∨NH₂ + Н [⊕]
В	240.2683	$C_{16}H_{33}N + H^+$	240,2691	\sim NH ₂ + H $^{\odot}$
С	268.2998	$C_{18}H_{37}N+H^{*}$	268.3004	\sim NH ₂ + H $^{\oplus}$
D	310.3102	C ₂₀ H ₃₉ ON + H ⁺	310,3104	HN HN HN H
E	310,3464	C ₂₁ H ₄₃ N + H+	310,3468	H → H ®
F	332.2923	C ₂₀ H ₃₉ NO + Na⁺	332.2929	$HN \xrightarrow{CH_3} H \overset{\Theta}{\longrightarrow}$
G	368,363	$C_{23}H_{43}ON + H_2O + H^+$	368,3529	м + н [⊕]
Н	516,5491	$C_{36}H_{69}N + H^{+}$	516,5508	NH,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
I	518,5646	C ₃₆ H ₇₁ N + H ⁺	518,5659	CH3 + H ®
J	577.6023	$C_{38}H_{75}N+H_2O+H^+$	577.6035	CH ₃ + H ₂ O + H [®]

Table S2: Ionized structure interpreted from mass spectrogram S6.

Figure S8a : ¹H NMR spectra from synthesis **A** in situ study. From bottom to top are displayed spectrum made from samples taken at 140 °C, 170 °C, 200 °C, 230 °C, 250 °C and after 30 min, 1h and 2h of plateau.

Figure S8b: Zoom in of ¹H NMR spectra in the CH_2 region from synthesis *A* in situ study. From bottom to top are displayed spectrum made from samples taken at 140 °C, 170 °C, 200 °C, 230 °C, 250 °C and after 30 min, 1h and 2h of plateau.

Figure S8c: Zoom in of ¹H NMR spectra in the H of secondary aldimine region from synthesis **A** in situ study. From bottom to top are displayed spectrum made from samples taken at 140 °C, 170 °C, 200 °C, 230 °C, 250 °C and after 30 min, 1h and 2h of plateau.

Figure S9a: ¹H NMR spectra from synthesis **B** in situ study. From bottom to top are displayed spectrum made from samples taken at 140 °C, 170 °C, 200 °C, 230 °C, 250 °C and after 30 min, 1 h and 2 h of plateau.

Figure S9b: Zoom of ¹H NMR spectra in the CH₂ region from synthesis **B** in situ study. From bottom to top are displayed spectrum made from samples taken at 140 °C, 170 °C, 200 °C, 230 °C, 250 °C and after 30 min, 1 h and 2 h of plateau.

Figure S9c: Zoom of ¹H NMR spectra in the H of secondary aldimine from synthesis *B* in situ study. From bottom to top are displayed spectrum made from samples taken at 140 °C, 170 °C, 200 °C, 230 °C, 250 °C and after 30 min, 1 h and 2 h of plateau.

Figure S10 : (a) XRD pattern of Cu_A' and Cu_B' . XRD reference pattern for cubic Cu in red (COD number: 9008468) for cubic Cu₂O in blue (COD number: 1010941) and for monoclinic CuO in green (COD number : 9015822).TEM micrograph of nanoparticules obtained from (b) synthesis A' and (c) synthesis B'.

Figure S11: XRD pattern of copper nanoparticles Cu_A synthesized with the modified synthesis A to remove water from the reaction medium. XRD reference pattern for cubic Cu in red (COD number: 9008468) and for cubic Cu₂O in blue (COD number: 1010941), (b) TEM micrograph of the nanoparticles.

Figure S12: NMR ¹H spectra of the supernatant of synthesis **B**: (a) before centrifugation, (b) after centrifugation at 9000 RPM for 15 minutes.

Figure S13: (Top) Molecular structure of species detected in the ¹H NMR spectrum. (Bottom) ¹H NMR of *Cu_A* catalysed transformation of oleylamine reaction crude centifuged at 9000 RPM during 15 min.

Figure S14: (Top) Molecular structure of species detected in the ¹H NMR spectrum. (Bottom) ¹H NMR of *Cu_B* catalysed transformation of oleylamine reaction crude centifuged at 9000 RPM during 15 min.

Figure S15: ESI-MS of *Cu_B* catalysed transformation of oleylamine reaction crude centifuged at 9000 RPM during 15 min. Peaks interpreted are marked with a red letter and their interpretation are given in Table S3.

Entry	Measured Mass	Proposed chemical formula	Corresponding theoritical mass	Proposed ionized structure
А	260,2373	$C_{18}H_{29}N + H^+$	260,2378	Dehydrogenated derivative of oleylamine
В	268.2998	$C_{18}H_{37}N + H^+$	268.3004	18 NH ₂
С	436.4874	$C_{30}H_{61}N + H^+$	436,4882	NH
D	464.5187	$C_{32}H_{65}N + H^+$	463,5117	NH16
E	490.5343	C ₃₄ H ₆₇ N + H ⁺	490,5351	NH
F	518.5653	C ₃₆ H ₇₁ N + H ⁺	518,5659	NH
G	768.8319	C ₅₄ H ₁₀₅ N + H ⁺	768,8325	18 18 18

Table S3 : Ionized structure interpreted from mass spectrogram S16.

Figure S16 : TEM micrograph of (a),(b) *Cu_A* and (c),(d) *Cu_B* after catalytic transformation of oleylamine.

Figure S17: XRD patterns of commercial (a) $Cu(OAc)_2$ and (b) $Cu(acac)_2$ as precursor. XRD reference pattern for $Cu(OAc)_2$ in orange (PDF 00-011-0800) and for $Cu(acac)_2$ in purple (PDF 00-011-0800) (bottom).

Element	Cu(OAc) ₂	Cu(acac) ₂
Cu	98	96.5
Ni	0	2
Al	1.5	1
Si	0.5	0

Table S4: Elemental analysis of commercial Cu(OAc)₂ and Cu(acac)₂ performed by energy dispersive X-ray spectroscopy. Carbon and oxygen were not quantified. The data correspond to molar ratio of Cu, Ni, Al and Si in each compound.