Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Effect of ultra-low amount of gold in oxide-supported bimetallic Au-Fe and Au-Cu catalysts on liquid-phase aerobic glycerol oxidation in water

Elena A. Redina, *^{a,b} Gennady I. Kapustin, ^a Olga P. Tkachenko, ^a Alexander A. Greish, ^a and Leonid M. Kustov ^{a,b,c}

^a N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russian Federation

^b National University of Science and Technology MISiS, 4 Leninsky prosp., Moscow 119991, Russian Federation.

^c Chemistry Department, Moscow State University, 1 Leninskie Gory, 3, Moscow, 119992, Russian Federation.

XRD data

Fig. S1. XRD pattern of CeO₂

Fig. S2. XRD pattern of TiO₂-P25

DRIFTS-CO of CeO₂-supported monometallic catalysts

The DPU method used for the preparation of monometallic catalysts allowed us to obtain Cu^+ and Cu^{2+} cations on the surface of TiO₂ and CeO₂ without calcination. In the DRIFTS spectrum of CO adsorbed on the non-calcined $1Cu/CeO_2$ sample, there is a band at 2099 cm⁻¹, which gradually disappears after evacuation at 20-90°C without any noticeable band shift (Fig. 1 A). This band was attributed to the linear carbonyl Cu⁺-CO formed either due to Cu²⁺ reduction to Cu⁺ with CO or CO interaction with surface cations Cu⁺ ^{1,2}. Calcination of the $1Cu/CeO_2$ sample at 400°C caused the band shift to 2117 cm⁻¹, which could be explained by the formation of copper oxide species with larger sizes and/or new copper sites with a lower electron density.

For the non-calcined $1Fe/CeO_2$, there are two intense bands at 2188 and 1992 cm⁻¹ in the DRIFTS-CO spectrum after evacuation at 300°C, which can be attributed to fragments of complexes formed by interaction of Fe species and products of urea decomposition (Fig. 2 A). In the spectrum of the calcined sample, these two bands disappeared (Fig. 2 B). In the region 2500-1800 cm⁻¹, a band at 2170 cm⁻¹ can be reliably assigned to Fe²⁺-CO (Fig. 3 A).

1 K. I. Hadjiivanov and G. N. Vayssilov, in Advances in Catalysis, Elsevier, 2002, vol. 47, pp. 307–511.

² K. Hadjiivanov, D. Klissurski, M. Kantcheva and A. Davydov, Faraday Trans., 1991, 87, 907.

Fig. S3. DRIFTS-CO spectra for 1Cu/CeO₂ before (A) and after calcination at 400°C (B).

Fig. S4. DRIFTS-CO spectra for 1Fe/CeO₂ before (1) and after calcination at 400°C (2).

Fig. S5. DRIFTS-CO spectra for 1Fe/CeO₂ after calcination at 400°C.

XPS results

Sample	BE	O1s		Au4f		Ti2p _{3/2}	Fe2p _{3/2}		Ce3d U"'
		1	2	1	2		Fe ²⁺	Fe ³⁺	
0.5Au/1Fe/TiO ₂	E, eV	529.9	531.4	83.6	84.2	458.8	708.7	710.3	
	%	85	15	90	10	100	40	60	
0.1%Au/1Fe/TiO ₂	E, eV	529.9	531.3	83.7	84.8	458.7	708.9	710.3	
	%	86	14	83	17	100	40	60	
0.1Au/1Fe/CeO ₂	E, eV	529.4	531.0/ 532.0	83	83.8		-	-	916.7
	%	70	10/20		-				
0.025Au/1Fe/TiO ₂	E, eV	529.9	531.2	83.5	84.6	458.7	708.7	710.4	
	%	86	14	80	20	100	55	45	
0.025Au/1Fe/TiO ₂ -O ₂	E, eV	529.9	531.2	83.5	84.5	458.7	708.7	710.5	
	%	86	14	76	24	100	40	60	

Table S1. XPS data and share of each peak component for supported Au-FeO_x catalysts

Table S2. Theoretically calculated and experimentally obtained by XPS atomic concentration of elements

	Experimental, % at.					Nominal, % at.			
Sample	0	Ti2p	Fe	Au	Ce	Ti2p	Fe	Au	Ce
0.5Au/1FeO/TiO ₂	71.3	26.7	1.7	0.24	-	33	1.4	0.19	-
0.1Au/1Fe/TiO ₂	71.1	26.9	1.9	0.12	-	33	1.4	0.04	-
0.1Au/1Fe/CeO ₂	62.4	-	-	0.02	28.4	-	-	0.086	33
0.025Au/1Fe/TiO ₂	70.5	28.2	1.3	0.02	-	33	1.4	0.01	-
0.025Au/1Fe/TiO ₂ -O ₂	70.4	28.1	1.4	0.04	-	33	1.4	0.01	-

Table S3. Theoretically calculated and experimentally obtained by XPS atomic ratios of e	elements
--	----------

	Experimental				Nominal			
Sample	Ti/Fe	Ti/Au	Ce/Au	Ce/Fe	Ti/Fe	Ti/Au	Ce/Au	Ce/Fe
0.5Au/1Fe/TiO ₂	15.7	111	-	-	23.6	174	-	-
0.1Au/1Fe/TiO ₂	14.2	224	-	-	23.6	825	-	-
0.1Au/1Fe/CeO ₂	-	-	1795	-	-	-	384	-
0.025Au/1Fe/TiO ₂	21.7	1410	-	-	23.6	3300	-	-
0.025Au/1Fe/TiO ₂ -O ₂	20.1	703	-	-	23.6	3300	-	-

Fig. S6. HR XP-spectrum of Au 4F for 0.1%Au/1%FeO_x/CeO₂.

TPR-H₂ data

Sample	т, °С	T max, °C	H₂/Cu, mol/mol
1Cu/CeO ₂	20-158	155	0.98
	158-254	191	6.04
0.1Au/1Cu/CeO ₂	20-170	153	0.48
	170-254	187	0.34

Table. S4. TPR-H₂ data for 1%CuO_x/CeO₂ and 0.1%Au/1%CuO_x/CeO₂ catalysts

Fig. S7. TPR-H₂ curves for $1Cu/CeO_2$ and $0.1Au/1Cu/CeO_2$ catalysts

Sample	T, ⁰C	T max, °C	H₂ µmol/g	H ₂ /Fe, mol/mol	H_2 theor µmol/g
1Fe/CeO ₂	20-450	349	227	1.27	59
	450-650	592	160	0.89	
	650-850	-	640	3.57	
0.1Au/1Fe/CeO ₂	20-377	349	125	0.70	15.2
	377-431	382	37	0.21	
	431-500	464	39	0.22	
	500-850	-	658	3.68	
0.1Au/1Fe/CeO ₂ -O ₂	20-380	349	157	0.88	-
re-oxidized	380-480	416	69.6	0.39	
	480-650	592	65.6	0.53	
	650-850	-	545	3.04	
0.5Au/1Fe/CeO ₂	20-450	349	213	1.19	76.2
	450-850	570	766	4.28	
0.5Au/1Fe/CeO ₂ -O ₂	20-450	349	213	1.19	-
re-oxidized	450-850	570	766	4.28	

Table S5. TPR-H₂ data for 1%FeO_x/CeO₂ and Au/FeO_x/CeO₂ catalysts

Fig. S8. TPR-H₂ data for 1Fe/CeO₂ (blue line), 0.1Au/1Cu/CeO₂ (orange line) and 0.5Au/1Cu/CeO₂ (green line) catalysts

Fig. S9. TPR-H₂ data for $1Fe/CeO_2$ and Fe_2O_3 normalized to 1% wt.

Fig. S10. TPR-H₂ data for 0.1Au/1Cu/CeO₂ (orange line) and 0.1Au/1Cu/CeO₂ catalyst re-oxidized in O₂/He flow at 90°C for 2 h (green line)

Fig. S11. TPR-H₂ curves for $0.5Au/1Cu/CeO_2$ (blue line) and $0.5Au/1Cu/CeO_2$ catalyst re-oxidized in O₂/He flow at 90°C for 2 h (red-dotted line)

Catalytic results

Table S6. The ac	tivity and se	ectivity of t	the prepared	1 catalysts
Table 30. The ac	livity and se	Electivity of t	the preparet	i catarysts.

Entry				Specific			Selectivity, %					
	Sample	t, ⁰C	p O ₂ , atm	Activity on Au, h ^{-1 a}	X, %	C bal,%	LA	AA	FA	GlyA	ТА	GcA
1	1Au/TiO ₂	60	atm	65	40	87	3	4	1	38	19	1
2	0.5Au/1Fe/TiO ₂	60	atm	48	15	100	16	0	23	28	0	32
3	0.1Au/1Fe/TiO ₂	60	atm	0	0	-	0	0	0	0	0	0
4	0.5Au/1Cu/TiO ₂	60	atm	139	43	68	0	0	11	27	0	0
5	1Fe/TiO ₂	60	atm	0	0	-	-	-	-	-	-	-
6	1Cu/TiO ₂	60	atm	0	0	-	-	-	-	-	-	-
7	0.5Au/1Fe/TiO ₂	60	5	110	34	95	4	0	18	36	0	26
8	0.5Au/1Cu/TiO ₂	90	5	68	66	63	0	0	20	12	0	12
9	$0.5Au/1Fe/TiO_2$	90	5	177	55	91	5	0	20	29	2	28
10	0.5Au/TiO ₂	90	5	139	43	69	2	0	2	21	0	3
11	1Fe/TiO ₂ *	90	5	4	11	99	0	0	18	28	0	45
12	1Fe/CeO ₂ *	90	5	2	5	100	3	1	4	87	0	5
13	1Cu/CeO ₂ *	90	5	18	54	55	0	tr	10	3	0	3
14	1Cu/TiO ₂ *	90	5	20	45	64	tr	tr	12	tr	0	7
15	$0.025 Au/1 Fe/TiO_2$	90	5	1225	30	78	1	0	8	10	0	9
16	$0.025Au/1Cu/TiO_2$	90	5	1483	68	51	0	tr	19	8	0	0
17	0.025Au/1Cu/CeO ₂	90	5	1547	78	40	0	0	23	0	0	0
18	0.025Au/1Cu/CeO ₂	60	6	2256	35	76	0	0	31	0	0	0
19	0.025Au/TiO ₂	90	5	193	3	97	5	2	5	85	0	0
20	0.1Au/1Fe/TiO ₂	90	5	532	44	79	8	0	15	2	0	28
21	0.1Au/1Fe/CeO ₂	90	5	661	48	90	9	1	4	53	8	4
22	0.1Au/1Fe/CeO ₂ ^b	90	5	508	68	88	11	tr	3	63	0	2
23	0.1Au/1Fe/CeO ₂ c	90	5	484	30	100	21	2	7	65	0	5
24	0.1Au/1Fe/CeO ₂ d	90	5	806	15	100	1	1	2	96	0	0
25	0.1Au/CeO ₂	90	5	161	10	99	5	1	6	61	0	19

Reaction conditions: Glycerol aqua solution (Gly) 0.3M, 0.5 ml, NaOH:Gly 1.7, m cat 11 mg, 2 h; ^b 4 h; ^c recycled catalyst (second cycle) without washing, Gly 0.3 M, 1 ml, NaOH:Gly 0.9, m cat 22 mg, 2 h; ^d 0.5 h LA – lactic acid, AA – acetic acid, FA – formic acid, GlyA – glyceric acid, GcA – glycolic acid, X – conversion, C bal. – carbon balance, tr -trace amount. ^a Specific activity on Au after 2 h of the reaction was calculated as Gly converted (mol) on Au (mol) per time (h). In the case of bimetallic catalyst Gly converted on Au was calculated as Gly converted on bimetallic catalyst abstracting the amount of Gly converted on Cu or Fe in monometallic catalysts. * Specific activity calculated for Fe or Cu catalyst after 2 h of the reaction as Gly converted (mol) on Fe or Cu (mol) per time (h).

Thermal analysis of the sample was carried out using the combined TG-DTA method. A sample with a mass of 0.010–0.015 g was placed in a Pt crucible, and then gravimetric imaging was performed in the linear heating mode from 20 to 600 °C at a rate of 10 °C/min in air; α -Al₂O₃ was used as a reference.

Entry	Sample	le Specific Activity on Au or Fe, h ⁻¹					
1	1Fe/TiO ₂	4	11				
2	0.5Au/1Fe/TiO ₂	68	66				
3	0.1Au/1Fe/TiO ₂	532	44				
4	0.1Au/1Fe/CeO ₂	661	48				
5	0.025Au/1Fe/TiO ₂	1225	30				

Table S7. Effect of Au loading on the activity of Au/Fe/TiO₂ catalysts in glycerol oxidation.