## **Supporting Information of**

## Coordinately unsaturated $O_{2c}$ -Ti<sub>5c</sub>- $O_{2c}$ sites promote the reactivity of Pt/TiO<sub>2</sub> catalysts in the solvent-free oxidation of octanol

Pengfei Yang<sup>1</sup>, Mark Douthwaite<sup>2</sup>, Jiahao Pan<sup>1</sup>, Lirong Zheng<sup>3</sup>, Song Hong<sup>1</sup>, David J. Morgan<sup>2</sup>, Mingyu Gao<sup>1</sup>, Dianqing Li<sup>1</sup>, Junting Feng<sup>1\*</sup>, and Graham J. Hutchings<sup>2\*</sup>

 <sup>1</sup> State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, People's Republic of China
<sup>2</sup> Max Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10
3AT (UK)

<sup>3</sup> Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China

\* Corresponding author

Address: Box 98, 15 Bei San Huan East Road, Beijing 100029, China

Tel: +86 10 64436992 Fax: +86 10 64436992

E-mail address: fengjt@mail.buct.edu.cn (Junting Feng); Hutch@cardiff.ac.uk (Graham Hutchings)



Figure S1 An model of anatase TiO<sub>2</sub> single crystal for calculation of geometrical characteristics.

Table S1 The properties of synthesized  $TiO_2$  with different facets exposed and the series  $Pt/TiO_2$  catalysts

|                                         | BET surface | Pt loading |
|-----------------------------------------|-------------|------------|
|                                         | $(m^{2}/g)$ | (wt.%)     |
| TiO <sub>2</sub> -101                   | 52.0        | -          |
| TiO <sub>2</sub> -001                   | 21.8        | -          |
| Pt/TiO <sub>2</sub> -101-Air            | 53.1        | 0.96       |
| Pt/TiO <sub>2</sub> -001-Air            | 26.6        | 0.99       |
| Pt/TiO <sub>2</sub> -101-H <sub>2</sub> | 50.1        | 1.02       |
| Pt/TiO <sub>2</sub> -001-H <sub>2</sub> | 24.8        | 1.01       |



Figure S2 HRTEM images of  $Pt/TiO_2$ -101-Air-500°C (a and d),  $Pt/TiO_2$ -101-001-Air-500°C (b and e) and  $Pt/TiO_2$ -001-Air-500°C(c and f)



Figure S3 HRTEM images of Pt/TiO\_2-101-H\_2 (A and a) and Pt/TiO\_2-001-H\_2 (B and b)



Figure S4 The ratio of  $Pt^{2+}/(Pt^{2+}+Pt^0)$  over the calcined  $Pt/TiO_2$  with different facets exposed.



Figure S5 Time–conversion plots at various temperatures for Pt/TiO<sub>2</sub>-101-Air (A), Pt/TiO<sub>2</sub>-101-001-Air (B), and Pt/TiO<sub>2</sub>-001-Air (C) and Arrhenius plots (D) for n-octanol oxidation.



Figure S6 Time–conversion plots at various temperatures for Pt/TiO<sub>2</sub>-101-Air (A), Pt/TiO<sub>2</sub>-101-001-Air (B), and Pt/TiO<sub>2</sub>-001-Air (C) and Arrhenius plots (D) for octanal oxidation.