Supporting Information

1. GENERAL INFORMATION2
2. SYNTHESIS OF OSMIUM COMPLEXES 3
3. CATALYST SCREENING AND CONDITIONS OPTIMIZATION: REACTION OF 4- METHOXYBENZALDEHYDE WITH 4-METHOXYANILINE 10
4. MECHANISTIC INVESTIGATIONS 21
5. SYNTHESIS AND CHARACTERIZATION OF THE RA PRODUCTS 24
6. DETAILS OF DFT CALCULATIONS 33
7. X-RAY INVESTIGATIONS 38
8. ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA AND HRMS OF THE OBTAINED OSMIUM COMPLEXES 40
9. ${ }^{1} \mathrm{H}$ AND ${ }^{13} \mathrm{C}$ NMR SPECTRA OF THE RA PRODUCTS. 64
10. REFERENCES 80

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification, THF was distilled over sodium/benzophenone.

Isolation of products was performed using column chromatography (Acros Organics, silica gel 0.060.200 mm) or using preparative flash chromatograph InterChim PuriFlash; DCM-MeOH binary system was used as an eluent. All details about particular chromatographic parameters are provided with the description of each compound.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ spectra were recorded in CDCl_{3} on Bruker Avance 300 , Bruker Avance 400 , or Varian Inova 400 spectrometers. Chemical shifts are reported in parts per million relative to CHCl_{3} (7.26 and 77.16 ppm for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ respectively). The following abbreviations were used to designate chemical shift multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of dublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. = quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, sept $=$ septet; coupling constants are given in Hertz (Hz). NMR yields were determined with reference to an internal standard (dimethyl formamide).

High-resolution mass spectra (HRMS) were registered on a Bruker Daltonics micrOTOF-Q II hybrid quadrupole time-of-flight mass spectrometer using electrospray ionization (ESI); measurements were done in a positive ion mode. The voltage on the capillary was 4500 V ; range of scanned masses, m / z 50-3000; external calibration (Electrospray Calibrant Solution; Fluka, Germany); nebulizer pressure: 0.4 bar; flow rate: $3 \mu \mathrm{l} / \mathrm{min}$; nitrogen as dry gas ($61 / \mathrm{min}$); interface temperature: $180^{\circ} \mathrm{C}$.

Analytical gas chromatography (GC) was performed using a Chromatec Crystal 5000.2 gas chromatograph fitted with a flame ionization detector (He was used as the carrier gas, $37 \mathrm{~mL} / \mathrm{min}$) and a MS detector. Chromatec CR-5 and Chromatec CR-5MS (30 meters) capillary column were used.

GC settings for the yield determination using FID detector and CR5 column:
The injector temperature was $250^{\circ} \mathrm{C}$, split ratio of $50: 1$ at the moment of injection, the FID temperature was $250^{\circ} \mathrm{C}$. Column compartment temperature program: $100^{\circ} \mathrm{C}$ for $2 \mathrm{~min}, 100^{\circ} \mathrm{C} \rightarrow$ $280^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}, 280^{\circ} \mathrm{C}$ for 3 min . Flow rate $2 \mathrm{~mL} / \mathrm{min}$, column CR-5. Retention time for $4-$ methoxy-N-(4-methoxybenzyl)aniline is 10.2 min ; for $\mathrm{N}, 1$-bis(4-methoxyphenyl)methanimine 10.4 min ; for 4-methoxyaniline 5.5 min .

GC settings for the qualitative analysis using MS detector and CR5-ms column:
The injector temperature was $250{ }^{\circ} \mathrm{C}$, split ratio of $75: 1$ at the moment of injection. Column compartment temperature program: $60^{\circ} \mathrm{C}$ for $4 \mathrm{~min}, 60^{\circ} \mathrm{C} \rightarrow 250^{\circ} \mathrm{C}$ at $30^{\circ} \mathrm{C} / \mathrm{min}, 250^{\circ} \mathrm{C}$ for 12 min . Flow rate $1 \mathrm{~mL} / \mathrm{min}$. MSD parameters: ion source temperature $200^{\circ} \mathrm{C}$, transfer line temperature $230^{\circ} \mathrm{C}$. Retention times (t_{R}) and integrated ratios were obtained using Chromatec Analytic Software.

Reactions with pressure were carried out in autoclaves made from either stainless steel or titanium. The autoclave material had no effect on the reactions.

2. Synthesis of osmium complexes

Complexes Os1 [(Cymene) $\left.\mathrm{OsCl}_{2}\right]_{2}{ }^{1}$, Os7 (2, ${ }^{\prime}$ '-bipyridine) $\mathrm{OsCl}_{2}(\mathrm{CO})_{2}{ }^{2}$, Os9 \quad (2, 2^{\prime} bipyridine $)_{2} \mathrm{OsCl}_{2}{ }^{3}, \mathbf{O s 1 0}\left[\left(2,2^{\prime} \text {-bipyridine }\right)_{2} \mathrm{OsCl}_{2}\right] \mathrm{Cl}^{3}$ were prepared as described in the literature.

A mixture of $\mathrm{Na}_{2} \mathrm{OsCl}_{6}(300 \mathrm{mg}, 0.67 \mathrm{mmol}), 1.5 \mathrm{ml}$ of γ-terpinene $(9.2 \mathrm{mmol})$ in $\mathrm{EtOH}(4 \mathrm{ml})$ was heated in a sealed tube at $100{ }^{\circ} \mathrm{C}$ for 4 hours under argon atmosphere. The reaction mixture was cooled to room temperature and evaporated to dryness in vacuo. The orange product was crushed in hexane, filtered off, washed with water and dried. Yield:209 mg (79 \%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.05(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.80$ (sept, $\left.J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{(M e})_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.31\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{1}$

$\left[\left(\eta^{6} \text {-cymene) } \text { OsI }_{2}\right]_{2}(\mathbf{O s 2})\right.$

A mixture of $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2}(100 \mathrm{mg}, 0.126 \mathrm{mmol})$ and $\mathrm{NaI} * 2 \mathrm{H}_{2} \mathrm{O}(300 \mathrm{mg}, 1.61 \mathrm{mmol})$ was stirred in acetone $(5 \mathrm{ml})$ at $100{ }^{\circ} \mathrm{C}$ in a sealed tube for 24 hours. The solvent was removed from the resulting dark-brown reaction mixture in vacuo and the residue was washed with water and dried. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, precipitated by adding $\mathrm{Et}_{2} \mathrm{O}$, filtered off and air-dried to afford 128 mg (88%) of red-brown crystals.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.06(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.95(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.84$ (sept, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}(\mathrm{Me})_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.25\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right)$.
 $\left(\mathrm{CH}(\mathrm{Me})_{2}\right), 22.8\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 20.6\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$.

HRMS (ESI-MS): calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NOsI}^{+}$, $\left[\left(\eta^{6} \text {-cymene) } \mathrm{Os}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \mathrm{I}\right]^{+} 494.0015\right.$, found 494.0013

$\left[\left(\eta^{6}-c y m e n e\right) \mathrm{Os}(2,2\right.$ '-bipyridine) $\mathbf{C l}] \mathrm{Cl}(\mathbf{O s 3})$

A solution of $2,2^{\prime}$-bipyridine ($21 \mathrm{mg}, 0.14 \mathrm{mmol}$) and $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2}(51 \mathrm{mg}, 0.07 \mathrm{mmol})$ in methanol (3 ml) was stirred for 2 h at room temperature. The solvent volume was reduced in vacuo to $\sim 0.5 \mathrm{ml}$ and product crystallization was induced by the addition of $\mathrm{Et}_{2} \mathrm{O}$. A formed yellow precipitate was recovered by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and air-dried. Yield $61 \mathrm{mg}(86 \%)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.84$ (d, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar-H}(\mathrm{Bipy})$), 7.03 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (Bipy)), 6.64 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (Bipy)), 6.14 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H (Bipy)), 4.75 (d, $J=5.7$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (cymene)), 4.43 (d, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}$ (cymene)), 0.90 (sept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathbf{C H}(\mathrm{Me})_{2}\right), 0.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right),-0.61\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 157.1\left(\mathrm{C}_{\mathrm{Ar}}\right.$ (Bipy)), $156.8\left(\mathrm{C}_{\mathrm{Ar}}\right.$ (Bipy)), $141.2\left(\mathrm{C}_{\mathrm{Ar}}\right.$ (Bipy)), $129.6\left(\mathrm{C}_{\mathrm{Ar}}\right.$ (Bipy)), $125.1\left(\mathrm{C}_{\mathrm{Ar}}\right.$ (Bipy)), $99.0\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{C}\right.$ (cymene)), $96.8\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{C}\right.$ (cymene)), $79.7\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{H}\right.$ (cymene)), $75.4\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$ (cymene)), $32.6\left(\underline{\mathrm{CH}}(\mathrm{Me})_{2}\right), 22.6\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 18.9\left(\mathrm{CH}_{3} \mathrm{Ar}\right)$.

HRMS (ESI-MS): calcd. for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OsCl}^{+}[\mathrm{M}]^{+}$517.1071, found 517.1068.

$\left[\left(\eta^{6}\right.\right.$-cymene) Os(Bphen)Cl]Cl (Os4)

A mixture of $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2}(29 \mathrm{mg}, 0.037 \mathrm{mmol})$ and bathophenanthroline ($27 \mathrm{mg}, 0.081$ mmol) was stirred in acetone (3 ml) for 1 hour at room temperature. The reaction mixture was evaporated in vacuo to dryness and the product was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$. A formed yellow precipitate fwas recovered by filtration, washed with $\mathrm{Et}_{2} \mathrm{O}$ and air-dried. Yield 61 mg (72%).
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 6.59$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}$ in the central ring), 6.43 (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{\mathbf{H} C H}=\mathrm{N}$), $6.17-5.97$ (m, 10H, Ph-rings), 4.93 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (cymene)), 4.64 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H (cymene)), $1.09-0.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}(\mathrm{Me})_{2}\right), 0.76(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}\right),-0.58\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 156.5,152.8,148.6,136.5,131.2,131.1,130.4,130.1,128.2,127.1$, $79.1\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$ (cymene)), $76.1\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{H}\right.$ (cymene)), $\left.32.5(\mathbf{C} \underline{(M e})_{2}\right), 22.7\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 18.9\left(\mathrm{CH}_{3} \mathrm{Ar}\right.$ (cymene)).

HRMS (ESI-MS): calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OsCl}^{+}[\mathrm{M}]^{+}$693.1698, found 693.1701.
$\left[\left(\eta^{6}\right.\right.$-cymene) Os(Bphen)Cl]BPh $\mathbf{H}_{4}($ Os5)

A mixture of $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2}(29 \mathrm{mg}, 0.037 \mathrm{mmol})$ and bathophenanthroline $(27 \mathrm{mg}, 0.081$ mmol) was stirred in acetone (3 ml) for 1 hour at room temperature. Solution of $\mathrm{NaBPh}_{4}(40 \mathrm{mg}$, $0.117 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was added and acetone was removed in vacuo. The yellow product was filtered off, washed with water and air-dried. Subsequent recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ gave 64 mg of the product (86%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.87(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 8.04 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}$ in the central ring), $7.62-7.57(\mathrm{~m}, 6 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 14 \mathrm{H}), 6.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 8 \mathrm{H}), 6.83(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 5.59(\mathrm{~d}$, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (cymene)), 5.31 (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (cymene)), $2.38-2.31$ (m, 1H, CH(Me) 2), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 0.93\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{\mathbf{3}}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2$ (m appears as 4 peaks with equel intensity $\left.-\underline{\mathbf{C}}(\mathrm{Ph})-\mathrm{B}\right), 154.4$, $151.3,147.3,136.5,134.7,130.3,130.0,129.4,128.7,127.4,126.0,125.9,122.2,96.4\left(\mathrm{C}_{\mathrm{Ar}-\mathrm{C}}\right.$ (cymene)), 94.9 ($\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{C}$ (cymene)), $77.4\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{H}\right.$ (cymene)), $75.1\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{H}\right.$ (cymene)), $31.3\left(\underline{\mathbf{C H}}(\mathrm{Me})_{2}\right)$, $22.5\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 18.7\left(\mathrm{CH}_{3} \mathrm{Ar}\right.$ (cymene)).

HRMS (ESI-MS): calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OsCl}^{+}[\mathrm{M}]^{+}$693.1698, found 693.1699.
$\left[\left(\eta^{6}\right.\right.$-cymene)Os(Bphen)I] PF $_{6}$ (Os6)

A mixture of $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsI}_{2}\right]_{2}(31 \mathrm{mg}, 0.027 \mathrm{mmol})$ and bathophenanthroline $(19 \mathrm{mg}, 0.057 \mathrm{mmol})$ was stirred in acetone (3 ml) for 1 hour at $50^{\circ} \mathrm{C}$. Then a solution on $\mathrm{KPF}_{6}(25 \mathrm{mg}, 0.136 \mathrm{mmol})$ in
water (10 ml) was added and acetone was removed in vacuo. The red-orange product was filtered off, washed with water and air-dried. Subsequent recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ gave 46 mg of the iodide (92%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.63$ (d, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), 8.09 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}$ in the central ring), $7.92(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{\mathbf{H C H}}=\mathrm{N}), 7.58(\mathrm{~m}$, appears as br s, $10 \mathrm{H}, \mathrm{Ph}$ rings), $6.23(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H(cymene)), 6.07 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (cymene)), 2.81 (sept, $\left.J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{\mathbf{H}}(\mathrm{Me})_{2}\right), 2.40$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.08\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 155.7,150.7,147.0,134.6,129.8,129.0,128.5,126.9,125.7,98.3$ $\left(\mathrm{C}_{\mathrm{Ar}^{-}-\mathrm{C}}\right.$ (cymene)), $93.66\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{C}\right.$ (cymene)), $76.52\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{H}\right.$ (cymene)), $76.48\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{H}\right.$ (cymene)), 31.6 $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C H A r}(\right.$ Cymene $\left.)\right), 22.1\left(\left(\mathbf{C H}_{3}\right)_{2} \mathrm{CHAr}(\right.$ Cymene $\left.)\right), 19.7\left(\mathrm{CH}_{3} \mathrm{Ar}\right.$ (cymene)).

HRMS (ESI-MS): calcd. for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{OsI}^{+}[\mathrm{M}]^{+} 785.1065$, found 785.1064.

(2,2'-bipyridine) $\mathbf{O s C l}_{\mathbf{2}}(\mathbf{C O})_{2}($ Os7 $)$

A 10 ml stainless steel autoclave was charged with $\mathrm{Na}_{2} \mathrm{OsCl}_{6}(61 \mathrm{mg}, 0.136 \mathrm{mmol}), 2,2$ '-bipyridine ($22 \mathrm{mg}, 0.138 \mathrm{mmol}$), formic acid (1.5 ml) and 37% formaldehyde in water $(0.3 \mathrm{ml})$. The autoclave was sealed, flushed three times with 10 atm of CO, and then pressurized with 30 atm of CO. The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath. After 20h, the reactor was cooled to room temperature and depressurized. The solvent was removed from the reaction mixture in vacuo and the crude product was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic extracts were concentrated and the residue was purified using column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ was used as stationary phase), eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After concentrating the mixture in vacuo to $\sim 1 \mathrm{ml}$, the complex was crystallized by addition of hexane. The formed yellow solid was filtered off and air-dried. Yield 14 mg (22\%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.14(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.17-8.10(\mathrm{~m}, 2 \mathrm{H})$, $7.79-7.53$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.4,155.6,153.1,139.9,128.1,123.5$.
HRMS (ESI-MS): calcd. for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{ClOsO}_{2}{ }^{+}[\mathrm{M}-\mathrm{Cl}]^{+} 438.9873$, found 438.9863 .
(Bphen) $\mathrm{OsCl}_{2}(\mathrm{CO})_{2}(\mathbf{O s 8})$

A 10 ml stainless steel autoclave was charged with $\mathrm{Na}_{2} \mathrm{OsCl}_{6}$ ($61 \mathrm{mg}, 0.136 \mathrm{mmol}$), bathophenanthroline ($46 \mathrm{mg}, 0.138 \mathrm{mmol}$), formic acid (1.5 ml) and 37% formaldehyde in water (0.3 $\mathrm{ml})$. The autoclave was sealed, flushed three times with 10 atm of CO, and then pressurized with 30 atm of CO . The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath. After 20h, the reactor was cooled to room temperature and depressurized. The solvent was removed from the reaction mixture in vacuo and the crude product was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic extracts were concentrated and the residue was purified using column chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ was used as stationary phase), eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After concentrating the mixture in vacuo to $\sim 1 \mathrm{ml}$, the complex was crystallized by addition of hexane. The formed yellow solid was filtered off and air-dried. Yield 38 mg (43\%).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.48(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 8.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}$ in the central ring), $7.90(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{\mathbf{H} C H}=\mathrm{N}), 7.65-7.61$ (m, 6H, Ph ring), $7.56-7.54$ (m, 4H, Ph ring).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.6\left(\mathrm{C}_{\mathrm{q}}=\mathrm{N}\right), 152.2(\mathrm{CH}=\mathrm{N}), 147.4\left(\mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 135.2\left(\underline{\mathbf{C}}_{\mathrm{q}} \mathrm{C}_{\mathrm{q}} \mathrm{Ph}\right), 130.2$, 129.7, 129.5, 129.4, 126.6, 126.1.

HRMS (ESI-MS): calcd. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{OsCl}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 672.9964$, found 672.9985 .

(2,2'-bipyridine) $\mathbf{2} \mathrm{OsCl}_{2}$ (Os9)

To a stirred solution of $\left[(\text { bipy })_{2} \mathrm{OsCl}_{2}\right] \mathrm{Cl}(20 \mathrm{mg}, 0.033 \mathrm{mmol})$ in methanol $(4 \mathrm{ml})$ a solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(50 \mathrm{mg}, 0.29 \mathrm{mmol})$ in water $(1 \mathrm{ml})$ was added in one portion at room temperature. The color of a solution immediately changed from brown to mulberry-red. The mixture was stirred for 30 $\min .3 \mathrm{ml}$ of water was then added and the reaction mixture was stored at $6^{\circ} \mathrm{C}$ for an hour to complete crystallization of a product. Almost black solid precipitate of (bipy) $)_{2} \mathrm{OsCl}_{2}$ was filtered off, washed with water, methanol, dried and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - hexane mixture. Yield $16 \mathrm{mg}(85 \%)$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 8.71(\mathrm{~s}, 2 \mathrm{H}), 8.26(\mathrm{~s}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.45(\mathrm{~m}$, 2 H), 7.11 (s, 2H), 6.88 (s, 2H), 6.78 (s, 2H), 6.12 (s, 2H).

HRMS (ESI-MS) of both (bipy) $)_{2} \mathrm{OsCl}_{2}$ and $\left[(\text { bipy })_{2} \mathrm{OsCl}_{2}\right] \mathrm{Cl}$ exhibits the only peak cluster corresponding to $\left[(\text { bipy })_{2} \mathrm{OsCl}_{2}\right]^{+}$. This could be assigned to the oxidation of (bipy) ${ }_{2} \mathrm{OsCl}_{2}$ during the analysis: calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Os}^{+} 574.0342$, found 574.0364.

(2,2'-bipyridine) $\mathbf{2}_{2} \mathrm{OsCl}_{3}$ (Os10)

A mixture of $\mathrm{Na}_{2} \mathrm{OsCl}_{6}(147 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $2,2^{\prime}$-bipyridine ($103 \mathrm{mg}, 0.66 \mathrm{mmol}$) was refluxed in DMF (4 ml) under argon for 1 hour. The solution was cooled down and the formed NaCl was filtered off. The DMF was removed in vacuo, the product was extracted with methanol from the residue and diethyl ether was added to the extract. The crystallized brown [(bipy) $)_{2} \mathrm{OsCl}_{2}$] Cl was filtered off and recrystallized from methanol - diethyl ether once again. After filtration, washing with diethyl ether and drying $134 \mathrm{mg}(67 \%)$ of [(bipy) $\left.)_{2} \mathrm{OsCl}_{2}\right] \mathrm{Cl}$ was obtained.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ all signals appear as broad singlets) $\delta 21.98,17.97,11.98,7.72,-7.28$, -11.39, -44.00, -51.67.

HRMS (ESI-MS) of both (bipy) $)_{2} \mathrm{OsCl}_{2}$ and $\left[(\text { bipy })_{2} \mathrm{OsCl}_{2}\right] \mathrm{Cl}$ exhibits the only peak cluster corresponding to [(bipy) $\left.)_{2} \mathrm{OsCl}_{2}\right]^{+}$. calcd. for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Cl}_{2} \mathrm{Os}^{+} 574.0342$, found 574.0364.

[(7 ${ }^{6}$-cymene) Os(N,C-napht)Cl] (Os11)

A mixture of $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2}(31.7 \mathrm{mg}, 0.040 \mathrm{mmol}), \mathrm{TlOAc}(21.1 \mathrm{mg}, 0.080 \mathrm{mmol})$ and Schiff base (0.084 mmol) was stirred in methanol $(2 \mathrm{ml})$ at $100^{\circ} \mathrm{C}$ in a sealed tube and under argon atmosphere for 4 hours. The solvent was removed from the reaction mixture in vacuo, the residue was separated on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. After removing of the solvents in vacuo the product was obtained as orange-red crystals. Yield 21 mg (44%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44$ (br s, $1 \mathrm{H}, \mathrm{CH}$ in ortho-position to Os), 8.35 (br s, $1 \mathrm{H}, \mathrm{CH}$ in orthoposition to $\mathrm{C}=\mathrm{N}$ group), 8.13 (br s, $1 \mathrm{H}, \mathrm{CH}=\mathrm{N}$), $7.74-7.67$ (m, $4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), $7.42-7.25(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ar}-$ H), 5.63 (br s, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}(\mathrm{cymene})$), $5.09-5.01\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right.$ (cymene)), $2.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{Me})_{2}\right), 2.20$ (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$), 0.95 (br s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}$), 0.75 (br s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.7,163.9,155.5,147.4,136.2,130.8,129.1,127.9,126.7,123.8$, 123.0, 96.6, 90.9, 83.9, 80.6, 72.9, 71.3, $31.2\left(\left(\mathrm{CH}_{3}\right)_{2} \underline{\mathbf{C H}} \mathrm{Ar} \text { (Cymene)), } 23.6 \text { ((} \mathbf{C H}_{3}\right)_{2} \mathrm{CHAr}$ (Cymene)), $21.7\left(\left(\mathbf{C H}_{3}\right)_{2} \mathrm{CHAr}(\mathrm{Cymene})\right), 18.8\left(\mathrm{CH}_{3} \mathrm{Ar}\right.$ (cymene)).

HRMS (ESI-MS): calcd. for $\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{NOsCl}^{+}[\mathrm{M}]^{+}$591.1353, found 591.1349.

$\left[\left(\eta^{6}\right.\right.$-cymene) $\left.\mathrm{Os}(\mathrm{N}, \mathrm{C}-\mathrm{anis}) \mathrm{Cl}\right]$ (Os12)

A mixture of $\left[\left(\eta^{6} \text {-cymene }\right) \mathrm{OsCl}_{2}\right]_{2}(31.7 \mathrm{mg}, 0.040 \mathrm{mmol})$, $\mathrm{TlOAc}(21.1 \mathrm{mg}, 0.080 \mathrm{mmol})$ and Schiff base (0.084 mmol) was stirred in methanol $(2 \mathrm{ml})$ at $100^{\circ} \mathrm{C}$ in a sealed tube and under argon atmosphere for 4 hours. The solvent was removed from the reaction mixture in vacuo, the residue was separated on SiO_{2} with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. After removing of the solvents in vacuo the product was obtained as orange-red crystals. Yield 41 mg (86%).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{N}), 7.73-7.41$ (m, 4H, Ar-H in ortho-position to $\mathrm{N}=\mathrm{C}$ group $+\mathrm{Ar}-\mathrm{H}$ in ortho position to OMe in the anisaldehyde moiety), $6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H in ortho-position to OMe group in anisidine moiety), $6.55(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ in ortho-position to C=N group), $5.50(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ (cymene)), 5.04 (dd, $J=8.4,4.8 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}(\mathrm{cymene})$), 3.90 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 3.86 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}$), 2.29 (sept, $\left.6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}(\mathrm{Me})_{2}\right)$, 2.17 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$), $0.97\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 0.81\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.4,172.0,161.7,158.6,149.1,140.9,131.1,124.0,122.9,113.8$, 109.2, 95.9, 90.7, 83.2, 79.9, 73.9, 71.9, $55.7\left(\mathrm{CH}_{3} \mathrm{O}\right), 55.2\left(\mathrm{CH}_{3} \mathrm{O}\right), 31.3\left(\left(\mathrm{CH}_{3}\right)_{2} \mathbf{C H} \operatorname{Ar}\right.$ (Cymene)), $23.5\left(\left(\mathbf{C H}_{3}\right)_{2} \mathbf{C H A r}(\right.$ Cymene $\left.)\right), 21.7\left(\mathbf{C H}_{3}\right)_{2} \mathrm{CHAr}($ Cymene $\left.)\right), 18.7\left(\mathrm{CH}_{3} \mathrm{Ar}\right.$ (Cymene)).

HRMS (ESI-MS): calcd. for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{OsCl}^{+}[\mathrm{M}]^{+}$601.1415, found 601.1419.

3. Catalyst Screening and Conditions Optimization: Reaction of 4methoxybenzaldehyde with 4-methoxyaniline

General procedure: A glass vial in a 10 mL stainless steel or titanium autoclave was charged with the prescribed quantity of the catalyst, co-catalyst, 4-methoxyaniline ($24.7-98.8 \mathrm{mg}, 50-200 \mathrm{~mol} \%, 0.1$ - 0.4 mmol), 4-methoxybenzaldehyde ($48.8 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$) and 0.4 mL of the corresponding solvent if mentioned. The autoclave was sealed, flushed three times with 10 bar of CO, then charged with the indicated pressure of CO. The reactor was placed into a preheated oil bath. After the indicated time, the reactor was cooled down to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL , and then a sample of the resulting solution was analyzed by GC. Unless otherwise mentioned, the yields were determined by GC.

All experiments were reproduced at least two times.

Table S1 Comparison of catalytic activity of different complexes.

Os1

Os5

Os2

Os6

Os7

Os8

Os9

Os10

Os11

Os12

Entry a	Catalyst	Yield $^{b}, \%$
1	$\mathrm{Na}_{2} \mathrm{OsCl}_{6}$	1
2	Os1	8
3	Os2	13

4	Os3	94
5	Os4	84
6	Os5	98
7	Os6	80
8	Os7	81
9	Os8	99
10	Os9	Traces
11	Os10	2
12	Os11	10
13	Os12	Traces

${ }^{a}$ Osmium catalyst ($0.5 \mathrm{~mol} \%$ [Os] $), 98.8 \mathrm{mg}(0.8 \mathrm{mmol})$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol})$ 4-methoxybenzaldehyde, $400 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}, 50$ bar CO, $120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ Yields of the experiments were determined by GC.

Table S2. Investigation of the effects of ancillary anions.

Entry	[Os] Loading, mol\%	$\begin{gathered} \text { Os1 }+ \text { Bphen }^{a}, \\ \% \end{gathered}$	$\begin{gathered} \text { Os4 }{ }^{b}, \\ \% \end{gathered}$	Os6 ${ }^{\text {b }}$, \%
Anions	-	Cl	Cl	I, PF_{6}
1	0.5	98	84	80
2	0.25	99	79	2
3	0.125	85	53	2

${ }^{a} 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $0.25-0.0625 \mathrm{~mol} \%$ of catalyst, $1.5-$ $0.375 \mathrm{~mol} \%$ of bathophenanthroline $\mathbf{L} 32-0,5 \mathrm{mg}(6.0-1.5 \mu \mathrm{~mol}), 400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 50 \mathrm{bar} \mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$. Yields of the experiments were determined by GC.
${ }^{b} 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4-m e t h o x y a n i l i n e, ~ 48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4-m e t h o x y b e n z a l d e h y d e, ~ 0.5-0.0625 \mathrm{~mol} \%$ of catalyst, 400 $\mu \mathrm{L}$ of $\mathrm{H}_{2} \mathrm{O}, 50$ bar $\mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$. Yields of the experiments were determined by GC

Table S3. Investigation of the effects of ancillary ligands.

		$\xrightarrow[\substack{\text { x mol\% 2,2'-bipyridine L1, } \\ 50 \text { bar } \mathrm{CO}, 120^{\circ} \mathrm{C}, \mathrm{H}_{2} \mathrm{O}, 22 \mathrm{~h}}]{0.5 \mathrm{~mol} \%[\mathrm{Os}]}$		
	Entry	Catalyst	2,2'-bipyridine L1, mol\%	Yield ${ }^{c}$, \%
	1^{a}	$\mathrm{Na}_{2} \mathrm{OsCl}_{6}$	-	1
	$2^{\text {b }}$	$\mathrm{Na}_{2} \mathrm{OsCl}_{6}$	1.5	89
	3^{a}	Os1	-	8
	4^{b}	Os1	1.5	89
	5^{a}	Os2	-	13
	$6^{\text {b }}$	Os2	1.5	99
	7^{a}	Os9	-	Traces
	8^{b}	Os9	1.5	5
	9^{a}	Os10	-	2
	10^{b}	Os10	1.5	2
	11^{a}	Os11	-	10
	12^{b}	Os11	1.5	71
	13^{a}	Os12	-	Traces
	14^{b}	Os12	1.5	15

${ }^{a}$ Osmium catalyst ($0.5 \mathrm{~mol} \%$ [Os] $), 98.8 \mathrm{mg}(0.8 \mathrm{mmol})$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol})$ 4-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 50$ bar CO, $120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
 $\mu \mathrm{L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 50$ bar $\mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{c}$ Yields of the experiments were determined by GC.

Table S4. Investigation of the effect of $\mathbf{2 , 2}$ '-bipyridine amount

${ }^{a} \mathrm{Na}_{2} \mathrm{OsCl}_{6} 0.9 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 2,2^{\prime}$-bipyridine $\mathbf{L 1} 0.32-3.2 \mathrm{mg}(2.0-20 \mu \mathrm{~mol}), 98.8 \mathrm{mg}(0.8 \mathrm{mmol})$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol})$ 4-methoxybenzaldehyde, $400 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 50$ bar CO$, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ Yields of the experiments were determined by GC.
Table S5. Screening of ancillary ligands ($\mathbf{N a}_{2} \mathbf{O s C l}_{6}$).

${ }^{a} \mathrm{Na}_{2} \mathrm{OsCl}_{6} 0.9 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 1.5 \mathrm{~mol} \%$ of ligand, $98.8 \mathrm{mg}(0.8 \mathrm{mmol})$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol})$ 4-methoxybenzaldehyde, $400 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}, 50$ bar $\mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ Yields of the experiments were determined by GC.

Table S6. Screening of ancillary ligands ([(p-cymene)OsCl $\left.\mathbf{2}_{2}\right]_{2} \mathbf{O s} 1$).

${ }^{a}$ Osmium catalyst Os1 $0.8 \mathrm{mg}(1.0 \mu \mathrm{~mol}), 0.5 \mathrm{~mol} \%$ of ligand, $98.8 \mathrm{mg}(0.8 \mathrm{mmol}), 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4$ mmol) 4-methoxybenzaldehyde, $320 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}+80 \mu \mathrm{LEtOH}, 50$ bar CO, $120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ Yields of the experiments were determined by GC.

Table S7. Investigation of the temperature effect.

${ }^{a}$ Osmium catalyst Os1 $0.8 \mathrm{mg}(1.0 \mu \mathrm{~mol}), 2,2^{\prime}$-bipyridine $\mathbf{L} 10.32 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 50$ bar CO , corresponding temperature, 22 h .
${ }^{b}$ Yields of the experiments were determined by GC.

Table S8. Screening of solvents.

Entry ${ }^{\text {a }}$	Solvent	Yield ${ }^{c}$, \%
1	THF ($20 \mathrm{ppm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$)	12
2	$\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{ppm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$	11
3	$\mathrm{MeCN}\left(20 \mathrm{ppm} \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right)$	10
4	Dioxane ($20 \mathrm{ppm} \mathrm{H}_{2} \mathrm{O}$)	7
5	EtOAc ($0.1 \% \mathrm{H}_{2} \mathrm{O}$)	25
6	t-BuOMe ($0.5 \% \mathrm{H}_{2} \mathrm{O}$)	10
7	$\mathrm{H}_{2} \mathrm{O}$	88
8	$\mathrm{PhCH}_{3}\left(0.03 \% \mathrm{H}_{2} \mathrm{O}\right)$	15
$9{ }^{\text {b }}$	$\mathrm{MeOH}\left(0.0096 \% \mathrm{H}_{2} \mathrm{O}\right)$	65
$10^{\text {b }}$	$\mathrm{MeOH}\left(0.014 \% \mathrm{H}_{2} \mathrm{O}\right)$	62
$11^{\text {b }}$	$\mathrm{EtOH}\left(1.4 \% \mathrm{H}_{2} \mathrm{O}\right)$	67
$12^{\text {b }}$	$\mathrm{EtOH}\left(4.86 \% \mathrm{H}_{2} \mathrm{O}\right)$	62
$13^{\text {b }}$	i-PrOH ($0.0092 \% \mathrm{H}_{2} \mathrm{O}$)	41
$14^{\text {b }}$	i-PrOH ($0.1 \% \mathrm{H}_{2} \mathrm{O}$)	31
15	$t-\mathrm{BuOH}\left(0.1 \% \mathrm{H}_{2} \mathrm{O}\right)$	16

${ }^{a}$ Osmium catalyst Os1 $0.8 \mathrm{mg}(1.0 \mu \mathrm{~mol}), 2,2^{\prime}$-bipyridine $\mathbf{L} 10.32 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of corresponding solvent, 50 bar $\mathrm{CO}, 140^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{\mathrm{b}}$ The proportion of water was measured by Fischer titration.
${ }^{c}$ Yields of the experiments were determined by GC.
Table S9. Assessment of ethanol as a cosolvent

${ }^{a}$ Osmium catalyst Os1 $0.8 \mathrm{mg}(1.0 \mu \mathrm{~mol}), 2,2^{\prime}-$ bipyridine $\mathbf{L 1} 0.32 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 98.8 \mathrm{mg}(0.8 \mathrm{mmol})$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}-\mathrm{EtOH}$ mixtures, 50 bar $\mathrm{CO}, 140^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ Yields of the experiments were determined by GC.

Table S10. Investigation of pressure influence on the Os-catalyzed alkylation.

${ }^{a}$ Osmium catalyst Os1 $0.8 \mathrm{mg}(1.0 \mu \mathrm{~mol}), 2,2^{\prime}$-bipyridine $\mathbf{L 1} 0.32 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 98.8 \mathrm{mg}(0.8 \mathrm{mmol})$ 4-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$, corresponding preassure, $120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ Yields of the experiments were determined by GC.
Table S11. Effect of the stoichiometric ratio of reagents.

${ }^{a}$ Osmium catalyst Os1 $0.8 \mathrm{mg}(1.0 \mu \mathrm{~mol}), 2,2^{\prime}-$ bipyridine L1 $0.32 \mathrm{mg}(2.0 \mu \mathrm{~mol}), 24.7-98.8 \mathrm{mg}(0.2-0.8 \mathrm{mmol}) 4-$ methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 50$ bar $\mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$.
${ }^{b}$ The yield was calculated relative to 4-methoxyaniline.
${ }^{c}$ Yields of the experiments were determined by GC.

Table S12. Investigation of the catalysts' loading

Entry	[Os] Loading, mol\%	$\begin{gathered} \mathrm{Na}_{2} \mathrm{OsCl}_{6} \\ +\mathrm{BiPy}^{\mathbf{L 1}{ }^{a}, \%} \end{gathered}$	$\begin{gathered} \text { Os1+ BiPy } \\ \mathbf{L 1}^{b}{ }^{b}, \% \end{gathered}$	$\begin{gathered} \text { Os2+Bipy } \\ \mathbf{L 1}^{a}, \% \end{gathered}$	$\begin{aligned} & \text { Os3 } \\ & c, \% \end{aligned}$	$\begin{gathered} \text { Os3 }+ \\ \text { BiPy L1 }{ }^{a}, \\ \% \\ \text {, } \end{gathered}$	$\begin{gathered} \text { Os3 } \\ 140^{\circ} \mathrm{C}^{d}, \% \end{gathered}$	Os4 ${ }^{\text {c }}$, \%	Os7 ${ }^{\text {c }}$, \%	Os8 ${ }^{\text {c }}$, \%	Os9 ${ }^{\text {c }}$, \%	$\begin{gathered} \text { Os9+ BiPy } \\ \mathbf{L 1}^{a}, \% \end{gathered}$
1	0,5	89	88	99	94	-	-	84	81	99	0	5
2	0,25	76	44	97	86	-	-	79	72	98	0	-
3	0,125	64	34	78	23	52	58	61	6	6	0	-
4	0,0625	30	26	54	12	-	-	18	25	6	0	-

${ }^{a} 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $0.5-0.0625 \mathrm{~mol} \%$ of catalyst, $1.5 \mathrm{~mol} \%$ of 2,2'-bipyridine $0.96 \mathrm{mg}(6.0 \mu \mathrm{~mol}), 400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}$, 50 bar $\mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h}$. Yields of the experiments were determined by GC.
${ }^{b} 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $\mathbf{3 2 0} \boldsymbol{\mu} \mathbf{L} \mathbf{H}_{\mathbf{2}} \mathbf{O} \mathbf{8 0} \boldsymbol{\mu L E t O H}, 0.25-0.03125 \mathrm{~mol} \% \%$ of catalyst, $\mathbf{1 . 5} \mathbf{~ m o l} \%$ of 2,2'-bipyridine L1, Yields of the experiments were determined by GC.
${ }^{c} 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol}) 4$-methoxybenzaldehyde, $0.5-0.0625 \mathrm{~mol} \%$ of catalyst, $400 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 50 \mathrm{bar} \mathrm{CO}, 120^{\circ} \mathrm{C}, 22 \mathrm{~h} . \mathrm{Yields}$ of the experiments were determined by GC.
${ }^{d} 98.8 \mathrm{mg}(0.8 \mathrm{mmol}) 4$-methoxyaniline, $48.8 \mu \mathrm{~L}(0.4 \mathrm{mmol})$ 4-methoxybenzaldehyde, $400 \mu \mathrm{~L} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 0.5-0.0625 \mathrm{~mol} \%$ of catalyst, $\mathbf{1 4 0}{ }^{\circ} \mathbf{C}$, Yields of the experiments were determined by GC.
《-»- Experiment was not conducted.

Finally, optimal conditions are:

Os2 ($0.0625-0.25 \mathrm{~mol} \%$), $1.5 \mathrm{~mol} \%$ 2,2'-bipyridine $\mathbf{L} 1,2$ equiv. of amine, $\mathrm{H}_{2} \mathrm{O}, 50$ bar $\mathrm{CO}, 120^{\circ} \mathrm{C}$, 22 h.

Os2 was selected as the benchmark catalyst due to its low cost and relative simplicity. Moreover, the reaction requires minimal loading of this catalyst. Thus, this catalyst represents the optimal combination of catalytic activity and cost.

Other active catalytic systems are listed in the table below along with their price and optimal conditions for catalysis. The prices were calculated on the basis of Sigma Aldrich catalogue.

Table S13. Comparison of the working catalytic systems.

Entry	Osmium source	Additive	Minimal [Os] loading required for preparative yield	Number of steps for the osmium precursor preparation	Additive/Ligand cost, EUR for 1 g	Yield at the standard conditions using the mentioned catalytic osmium loading, \%
1	$\mathrm{Na}_{2} \mathrm{OsCl}_{6}$	Bipy L1 1.5 mol\%	$0.125 \mathrm{~mol} \%$	0	$11 \mathrm{EUR} / \mathrm{g}$	64
2	$\mathrm{Na}_{2} \mathrm{OsCl}_{6}$	BPhen L3 1.5 mol \%	$0.5 \mathrm{~mol} \%$	0	549 EUR/g	99
3	Os1	Bipy L1 $1.5 \mathrm{~mol} \%$	$\begin{aligned} & 0.5 \mathrm{~mol} \% \\ & \left(\mathrm{H}_{2} \mathrm{O}: \mathrm{EtOH}\right. \\ & 4: 1) \end{aligned}$	1	$11 \mathrm{EUR} / \mathrm{g}$	88
4	Os1	BPhen L3 1.5 mol \%	$\begin{array}{ll} \hline 0.125 \mathrm{~mol} \% \\ \text { with } & 0.3725 \\ \text { mol\% } & \text { Bphen } \end{array}$	1	549 EUR/g	85
5	Os2	Bipy L1 1.5 mol \%	$0.0625 \mathrm{~mol} \%$	2	$11 \mathrm{EUR} / \mathrm{g}$	54
6	Os7	-	$0.25 \mathrm{~mol} \%$	1	$11 \mathrm{EUR} / \mathrm{g}$	72
7	Os8	-	$0.25 \mathrm{~mol} \%$	1	549 EUR/g	98
8	Os3	$1.5 \mathrm{~mol} \%$ Bipy L1	$0.125 \mathrm{~mol} \%$	2	$11 \mathrm{EUR} / \mathrm{g}$	52
9	Os3	-	$\begin{aligned} & 0.125 \mathrm{~mol} \% \text {, } \\ & 140^{\circ} \mathrm{C} \end{aligned}$	2	$11 \mathrm{EUR} / \mathrm{g}$	58
10	Os4	-	0.125	2	549 EUR/g	61
11	Os6	-	0.5	2	549 EUR/g	80

4. Mechanistic investigations

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s} \mathbf{2}(5.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 50$ $\mathrm{mol} \%$), 2, 2'-bipyridine ($1.4 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 100 \mathrm{~mol} \%$) and water ($100 \mu \mathrm{~L}$). The autoclave was sealed, flushed three times with 10 bar of Ar , and then charged with $\operatorname{Ar}(50 \mathrm{bar})$. The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 18 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was analyzed by NMR and LCMS. The main component is CymeneOsBiPyI ${ }_{2}$.

Reaction mixture ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, signal of water was supressed)

Os2
L1
A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s} \mathbf{2}(5.2 \mathrm{mg}, 4.5 \mu \mathrm{~mol}, 50$ $\mathrm{mol} \%$), 2,2'-bipyridine ($1.4 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 100 \mathrm{~mol} \%$) and water ($100 \mu \mathrm{~L}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 18 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was analyzed by NMR and LCMS. The main component is $\mathrm{CymeneOsBiPyI}_{2}$, and $(\mathrm{BiPy})_{2} \mathrm{OsCOI}_{2}$ was identified by MS.

Reaction mixture ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, signal of water was supressed)

A high pressure NMR tube was charged with catalyst Os2 ($10 \mathrm{mg}, 8.7 \mu \mathrm{~mol}, 50 \mathrm{~mol} \%$), 2,2'-bipyridine ($2.7 \mathrm{mg}, 17 \mu \mathrm{~mol}, 100 \mathrm{~mol} \%$), 4-methoxyaniline ($2.1 \mathrm{mg}, 100 \mathrm{~mol} \%$, $17 \mu \mathrm{~mol}$), 4methoxybenzaldehyde $(2.1 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 17 \mu \mathrm{~mol})$ and $\mathrm{CD}_{3} \mathrm{OD}(400 \mu \mathrm{~L})$. The tube was sealed,
flushed three times with 3 bar of CO, and then charged with CO (3 bar). The tube was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 16 h . After the indicated time, the tube was cooled to room temperature and the reaction mixture was analyzed by NMR.

Reaction mixture ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Hydrogenation under the developed reaction conditions

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s} 2(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), $\mathrm{N}, 1$-bis(4-methoxyphenyl)methanimine (96.8 $\mathrm{mg}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol})$, water or THF $(400 \mu \mathrm{~L})$. The autoclave was sealed, flushed three times with 10 bar of H_{2}, and then charged with H_{2} (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR.

5. Synthesis and characterization of the RA products
 4-methoxy-N-(4-methoxybenzyl)aniline (1)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ mol\%), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4 -methoxyaniline ($98.8 \mathrm{mg}, 200 \mathrm{~mol} \%, 0.8$ $\mathrm{mmol})$, water $(400 \mu \mathrm{~L})$ and 4-methoxybenzaldehyde ($48.8 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 93% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography using InterChim PuriFlash chromatograph in hexane-ethyl acetate gradient system ($\mathrm{Rf}=0.5$ hexane/ethyl acetate/trimethylamine $=4 / 1 / 0.05)$. Isolated as a white solid - $93 \%(90.9 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.88(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.61(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.75$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.9\left(\mathrm{C}_{\left.\mathrm{Ar}^{-}-\mathrm{O}\right), 152.2\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 142.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}\right), 131.8\left(\underline{\mathbf{C}}_{\mathrm{Ar}^{-}}-\mathrm{CH}_{2}\right), 128.9}\right.$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.06\left(\mathrm{C}_{\mathrm{Ar}}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 48.8\left(\mathrm{NCH}_{2}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{4}$
4-methoxy-N-(3-methoxybenzyl)aniline (2)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ mol\%), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4-methoxyaniline ($98.8 \mathrm{mg}, 200 \mathrm{~mol} \%, 0.8$ $\mathrm{mmol})$, water $(400 \mu \mathrm{~L})$ and 3-methoxybenzaldehyde ($49 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 86% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine $10 / 1 / 0.1(\mathrm{Rf}=0.11)$. Isolated as a yellow oil - $71 \%(69.6 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.05-6.90(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.89-6.71(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{ArH}), 6.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 152.3\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 142.5\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{N}\right), 141.5\left(\mathbf{C}_{\mathrm{Ar}^{-}}-\mathrm{C}\right), 129.7$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 119.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 113.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 112.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.3\left(\mathrm{OCH}_{3}\right), 49.3$ $\left(\mathrm{NCH}_{2}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{4}$

4-methoxy-N-(2-methoxybenzyl)aniline (3)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4-methoxyaniline ($98.8 \mathrm{mg}, 200 \mathrm{~mol} \%, 0.8$ $\mathrm{mmol})$ water $(400 \mu \mathrm{~L})$ and 2-methoxybenzaldehyde ($48.6 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $140^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 86\% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine $10 / 1 / 0.1(\mathrm{Rf}=0.11)$. Isolated as a yellow oil - $80 \%(77.7 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.26(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.98-$ $6.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.64(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.30\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 3.87 (s, 3H, OCH $)_{3}$), $3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.5\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 152.2\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 142.8\left(\mathrm{C}_{\mathrm{Ar}-\mathrm{N}), 129.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{C}_{\mathrm{Ar}}\right),}\right.$ $127.7\left(\underline{\mathbf{C}_{\text {ar }}}-\mathrm{CH}_{2}\right), 120.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.54\left(\mathrm{C}_{\mathrm{Ar}}\right), 110.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 55.9\left(\mathrm{OCH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 44.6$ $\left(\mathrm{NCH}_{2}\right)$.

The obtained NMR data are in an agreement with literature data. ${ }^{4}$

N -(4-chlorobenzyl)-4-methoxyaniline (4)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s} 2(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ mol\%), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4-methoxyaniline ($98.8 \mathrm{mg}, 200 \mathrm{~mol} \%, 0.8$ $\mathrm{mmol})$ 4-chlorobenzaldehyde ($56.4 \mathrm{mg}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$) and water ($400 \mu \mathrm{~L}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $160^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled
to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 80% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent: hexane/ethyl acetate/triethylamine 20/1/0.1 $(\mathrm{Rf}=0.11)$ to hexane/ethyl acetate/triethylamine $10 / 1 / 0.1(\mathrm{Rf}=0.2)$. Isolated as a yellow oil. Isolated as a yellow oil - $70 \%(69 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ ($\left.\mathrm{s}, 4 \mathrm{H}, \mathrm{Cl}-\mathrm{Ar} \underline{\mathbf{H}}\right), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.59(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.27\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 142.1\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{N}\right), 138.4\left(\underline{\mathbf{C}}_{\mathrm{ar}^{-}}-\mathrm{C}\right), 132.8\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{Cl}\right), 128.83$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.78\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 55.9\left(\mathrm{OCH}_{3}\right), 48.6\left(\mathrm{NCH}_{2}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{5}$

N -(3-chlorobenzyl)-4-methoxyaniline (5)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2, 2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4 -methoxyaniline ($98.8 \mathrm{mg}, 200 \mathrm{~mol} \%, 0.8$ $\mathrm{mmol})$, water $(400 \mu \mathrm{~L})$ and 3 -chlorobenzaldehyde ($45.2 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $160^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 78% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine 10/1/0.1 $(\mathrm{Rf}=0.2)$. Isolated as a yellow oil - $73 \%(72.5 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Cl}-\mathrm{Ar} \underline{\mathbf{H}}), 7.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Cl}-\mathrm{Ar} \underline{\mathbf{H}}), 6.79(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 6.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 4.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.4\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{O}\right), 142.1\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}\right), 134.6\left(\underline{\mathbf{C}}_{\mathrm{Ar}^{-}}-\mathrm{C}\right), 130.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $127.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 55.9\left(\mathrm{OCH}_{3}\right), 48.7\left(\mathrm{NCH}_{2}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{6}$

N-(4-(benzyloxy)benzyl)-4-methoxyaniline (6)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ mol\%), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4-methoxyaniline ($98.8 \mathrm{mg}, 200 \mathrm{~mol} \%, 0.8$ mmol), 4-(benzyloxy)benzaldehyde ($84.9 \mathrm{mg}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$) and water ($400 \mu \mathrm{~L}$). The autoclave was sealed, flushed three times with 10 bar of CO , and then charged with CO (50 bar). The reactor was placed into a preheated to $160^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 68% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography using InterChim PuriFlash chromatograph in hexane-DCM gradient system ($\mathrm{Rf}=0.16 \mathrm{DCM}$). Isolated as a yellowish solid - 56% (71.2 mg).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56$ - $7.21(\mathrm{~m}, 7 \mathrm{H}, \mathrm{ArH}), 6.97(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.62(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.76(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$).
 $\left(\underline{\mathbf{C}}_{\underline{A r}}-\mathrm{C}\right), 129.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 115.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 70.1$ $\left(\mathrm{OCH}_{2}\right), 55.9\left(\mathrm{OCH}_{3}\right), 48.8\left(\mathrm{NCH}_{2}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{4}$

N -isopropyl-4-methoxyaniline (7)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(2.32 \mathrm{mg}, 2.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2, 2'-bipyridine ($1.92 \mathrm{mg}, 12.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), 4-methoxyaniline ($98.8 \mathrm{mg}, 100 \mathrm{~mol} \%, 0.8$ $\mathrm{mmol})$ water $(800 \mu \mathrm{~L})$, and acetone ($1164 \mu \mathrm{~L}, 2000 \mathrm{~mol} \%, 16 \mathrm{mmol})$. The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $160^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 87% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine $10 / 1 / 0.1(\mathrm{Rf}=0.22)$. Isolated as a yellow oil - $67 \%(88 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.79$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.58 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 3.75 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.55\left(\mathrm{sept}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathbf{C H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.20\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{C}\left(\underline{\mathbf{C H}_{3}}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.0\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 141.9\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}\right), 115.0\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{Ar}}\right), 55.9\left(\mathrm{OCH}_{3}\right), 45.3$ $(\mathrm{NCH}), 23.2\left(\mathrm{CH}_{3}\right)$.

The obtained NMR data are in agreement with the literature report ${ }^{7}$

N-(4-methoxyphenyl)adamantan-2-amine (8)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}$ ($1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2, 2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), 4-methoxyaniline (98.8 mg , $200 \mathrm{~mol} \%, 0.8 \mathrm{mmol}$) and 2-adamantanoe ($60.5 \mathrm{mg}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $180^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 82% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography using InterChim PuriFlash chromatograph in $\mathrm{DCM}-\mathrm{MeOH}$ gradient system ($\mathrm{Rf}=0.3 \mathrm{DCM}$). Isolated as a brown solid - 70% (72.5 mg).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.59 (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 3.75 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 2.10-1.69(\mathrm{~m}, 12 \mathrm{H}$, Adamantyl), $1.59(\mathrm{~m}$ appears as d, $J=12.9 \mathrm{~Hz}$, 2 H , Adamantyl).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.8\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 141.7\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{N}\right), 115.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 114.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 57.9(\mathrm{NCH})$, $56.0\left(\mathrm{OCH}_{3}\right), 37.9$ (Adamantyl), 37.6 (Adamantyl), 31.7 (Adamantyl), 31.6 (Adamantyl), 27.6 (Adamantyl), 27.5 (Adamantyl).

The obtained NMR data are in agreement with the literature report. ${ }^{4}$

4-(4-phenylbutan-2-yl)-morpholine (9)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}$ ($1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), , 2, 2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), morpholine ($70 \mu \mathrm{~L}, 200 \mathrm{~mol}$ $\%, 0.8 \mathrm{mmol}$) and 4-phenylbutan-2-one ($60.1 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 83% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine $=4 / 1 / 0.1, \mathrm{Rf}=0.19)$ to afford $62 \mathrm{mg}(71 \%)$ of the product as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.07(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH}), 3.79-3.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 2.81-2.24(\mathrm{~m}$, $7 \mathrm{H}, \mathrm{PhCH}_{2}, \mathrm{CH}_{3} \underline{\mathbf{C H N}}, \mathrm{CH}_{2} \mathrm{~N}$), $1.90-1.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CC} \underline{\mathbf{H} H C}), 1.65-1.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH} \underline{\mathrm{HC}}), 1.02$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{\mathbf{3}}$).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}\right), 128.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 67.4\left(\mathrm{CH}_{2} \mathrm{O}\right)$, $58.5(\mathrm{CHN}), 48.7\left(\mathrm{CH}_{2} \mathrm{~N}\right), 35.2\left(\mathbf{C H}_{2} \mathbf{C}\right), 32.9\left(\mathrm{PhCH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{10}$

N-benzyl-4-phenylbutan-2-amine (10)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}$ ($1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ mol\%), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), phenylmethanamine (87.6 $\mu \mathrm{L}, 200 \mathrm{~mol} \%, 0.8 \mathrm{mmol}$) and 4-phenylbutan-2-one ($60.1 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $140^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 84% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine $=4 / 1 / 0.1, \mathrm{Rf}=0.17)$ to afford $79.7 \mathrm{mg}(83 \%)$ of the product as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDC}_{3}$) $\delta 7.47-7.00(\mathrm{~m}, 10 \mathrm{H}, \mathrm{ArH}), 3.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.80-2.58(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{C}, \mathrm{NCHCH}_{3}$), $2.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH} \underline{\mathrm{HC}}), 1.74-1.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CC} \underline{\mathbf{H} H C})$, $1.16\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}\right), 140.9\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}\right), 128.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.46\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.45\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $128.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 52.1(\mathrm{C}-\mathrm{N}), 51.4(\mathrm{C}-\mathrm{N}), 38.8\left(\mathrm{CCH}_{2} \mathrm{C}\right), 32.4\left(\mathrm{PhCH}_{2} \mathrm{C}\right), 20.5$ (CHCH_{3}).

The obtained NMR data are in agreement with the literature report. ${ }^{8}$

N-benzylcyclopentanamine (11)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), cyclopentanone ($35.4 \mu \mathrm{~L}$, $100 \mathrm{~mol} \%, 0.4 \mathrm{mmol})$ and phenylmethanamine ($87.6 \mu \mathrm{~L}, 200 \mathrm{~mol} \%, 0.8 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $140^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 72% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine $=20 / 1 / 1, \mathrm{Rf}=0.33)$ to afford $49.5 \mathrm{mg}(65 \%)$ of the product as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.30-7.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 3.79(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{PhCH}_{2} \mathrm{~N}$), 3.14 (quint., $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}$), $1.93-1.81$ (m, 2H, Cyclopentyl), 1.78 - 1.65 (m, 2H, Cyclopentyl), $1.62-1.48$ (m, 2H, Cyclopentyl), $1.46-1.34$ (m, 3H, NH, Cyclopentyl).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.8\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{C}\right), 128.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 59.2(\mathrm{NCH})$, $52.9\left(\mathrm{PhCH}_{2} \mathrm{~N}\right), 33.3$ (Cyclopentyl), 24.2 (Cyclopentyl).

The obtained NMR data are in agreement with the literature report. ${ }^{9}$

4-(2-phenylpropyl)morpholine (12)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}$ ($1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), , 2, 2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), morpholine ($70 \mu \mathrm{~L}, 200 \mathrm{~mol}$ $\%, 0.8 \mathrm{mmol}$) and 2-phenylpropanal ($48.9 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 71% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine $=10 / 1 / 0.1, \mathrm{Rf}=0.13)$ to afford $50.9 \mathrm{mg}(63 \%)$ of the product as a yellowish oil.

```
'1}\mp@subsup{}{}{1}\textrm{NMR}(400 MHz, CDCl ) \delta 7.34-7.16 (m, 5H, ArH), 3.74-3.63 (m, 4H, OCH2CH2 N), 3.03 -
```



```
=6.6 Hz, 3H, CHCH
```

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.1\left(\mathrm{C}_{\mathrm{Ar}} \mathrm{C}\right)$, $128.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 67.2$ $\left(\mathbf{O C H}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 66.7\left(\mathbf{N C H}_{2} \mathrm{CH}\right), 54.1\left(\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}\right), 37.2\left(\mathbf{C H C H}_{3}\right), 20.0\left(\mathrm{CH}_{\underline{\mathbf{C H}_{3}}}\right)$.
The obtained NMR data are in agreement with the literature report. ${ }^{10}$

4-(3-(4-isopropylphenyl)-2-methylpropyl)morpholine (13)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2, 2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), morpholine ($70 \mu \mathrm{~L}, 200 \mathrm{~mol}$ $\%, 0.8 \mathrm{mmol}$) and 3-(4-isopropylphenyl)-2-methylpropanal ($80.1 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 71% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under
reduced pressure and the residue was purified by column chromatography (eluent: hexane/ethyl acetate/triethylamine $=4 / 1 / 0.1, \mathrm{Rf}=0.27$), dissolved in diluted HCl and washed with diethyl ether (2 $x 3 \mathrm{ml}$). The water solution was basified with KOH , the product extracted with diethyl ether (3×3 $\mathrm{ml})$ and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo $69 \mathrm{mg}(66 \%)$ of the product was obtained as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.73(\mathrm{t}$, $\left.J=4.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 2.95-2.83\left(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathbf{C H}}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.82-2.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\underline{\mathbf{C H}}}^{2} 2\right), 2.43$ (br. s, $4 \mathrm{H}, \mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}$), $2.35-2.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}_{2}\right), 2.18-2.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{\underline{-1}}^{2}\right), 2.05-1.88(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathbf{C H C H}_{3}\right), 1.25\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathbf{C H}_{3} 2_{2}\right), 0.87\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{\underline{\mathbf{C H}}}^{3} \mathbf{)}\right.\right.$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.3\left(\underline{\mathbf{C}_{\mathrm{ar}}}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 138.3\left(\underline{\mathbf{C}}_{\underline{\operatorname{ar}}}-\mathrm{CH}_{2}\right), 129.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $67.2\left(\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}\right), 65.5\left(\mathrm{NCH}_{2} \mathbf{C H}\right), 54.1\left(\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}\right), 40.9\left(\mathrm{PhCH}_{2}\right), 33.8(\mathrm{CH}), 32.1(\mathrm{CH}), 24.2$ $\left(\mathrm{CH}\left(\mathbf{C H}_{3}\right)_{2}\right), 18.2\left(\mathrm{CHCH}_{3}\right)$.

HRMS (TOF ESI +): for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$calculated $\mathrm{m} / \mathrm{z} 262.2165$, found $\mathrm{m} / \mathrm{z} 262.2165$.

4-(4-methoxybenzyl)morpholine (14)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s 2}(0.29 \mathrm{mg}, 0.25 \mu \mathrm{~mol}, 0.0625$ mol\%), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), morpholine ($70 \mu \mathrm{~L}, 200 \mathrm{~mol}$ $\%, 0.8 \mathrm{mmol})$ and 4-methoxybenzaldehyde ($48.8 \mu \mathrm{~L}, 100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $120^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 80% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine $4 / 1 / 0.05(\mathrm{Rf}=0.13)$. Isolated as a yellow oil $-75 \%(65.5 \mathrm{mg})$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $6.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.79$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.70\left(\mathrm{t}, J=4.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right.$), $3.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ph}_{\left.\underline{\mathbf{C H}_{2}} \mathrm{~N}\right), 2.45-2.39(\mathrm{~m}, 4 \mathrm{H}, ~}^{\mathbf{2}}\right.$ $\left.\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.9\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right)$, $130.5\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{C}\right)$, $129.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 113.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 67.1$ $\left(\mathrm{OCH}_{2} \mathbf{C H}_{2} \mathrm{~N}\right), 63.0\left(\mathrm{Ph}_{\underline{\mathbf{C H}_{2}}} \mathrm{~N}\right), 55.3\left(\mathrm{OCH}_{3}\right), 53.6\left(\mathrm{OCH}_{2} \underline{\mathbf{C H}_{2}} \mathbf{N}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{11}$

2-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine (15)

A glass vial in a 10 mL titanium autoclave was charged with catalyst $\mathbf{O s} 2(1.16 \mathrm{mg}, 1.0 \mu \mathrm{~mol}, 0.25$ $\mathrm{mol} \%$), 2,2'-bipyridine ($0.96 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.5 \mathrm{~mol} \%$), water ($400 \mu \mathrm{~L}$), 1-naphthaldehyde ($54 \mu \mathrm{~L}$, $100 \mathrm{~mol} \%, 0.4 \mathrm{mmol}$) and tert-butylamine ($421.6 \mu \mathrm{~L}, 500 \mathrm{~mol} \%, 2 \mathrm{mmol}$). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to $160^{\circ} \mathrm{C}$ oil bath for 22 h . After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to $5 \mathrm{~mL}, 1 \mathrm{ml}$ aliquot was analyzed by NMR. 63% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine $=20 / 1 / 1, \mathrm{Rf}=0.41)$ to afford $43.8 \mathrm{mg}(51 \%)$ of the product as a yellowish oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17$ (d, $\left.J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.78$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.62-7.37(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 4.20\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.0\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{CH}_{2}\right), 134.0\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{C}\right), 128.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 127.7$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 126.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 123.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 51.0\left(\underline{\mathbf{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 44.9\left(\mathrm{CH}_{2} \mathrm{~N}\right)$, $29.3\left(\mathrm{C}\left(\mathbf{C H}_{3}\right)_{3}\right)$.

The obtained NMR data are in agreement with the literature report. ${ }^{12}$

6. Details of DFT calculations

Geometry optimizations and frequency calculations for the decarboxylation stage of the WGSR catalyzed by osmium complexes were carried out using Gaussian 09 software (revision D.01) ${ }^{13}$ applying the M06-L functional ${ }^{14}$ with SDD basis set. Water solvation was included using SMD model. ${ }^{15}$ The optimized geometries were verified to have no negative frequencies for all intermediates and only one negative frequency for the transition states.

Cartesian coordinates optimized at the M06-L/SDD level

$\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{2}(\mathrm{COOH})\right]^{-}$(the COOH group is opposite to the CO ligand)

76	-0.039379000	0.483018000	0.509308000
17	-1.961343000	1.528528000	1.853353000
17	-0.230623000	-1.607191000	1.938434000
6	0.138747000	2.121886000	-0.412878000
6	1.384612000	-0.328525000	-0.416960000
8	0.248253000	3.157063000	-0.970186000
8	2.277853000	-0.853790000	-0.980577000
6	1.348368000	1.141693000	1.998951000
8	2.582833000	0.905886000	2.016470000
6	-1.438457000	-0.249070000	-0.698049000
8	-2.294741000	-0.670181000	-1.378457000
8	0.870267000	1.869436000	3.098687000
1	-0.109252000	2.004692000	3.027172000

TS for decarboxylation of $\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{2}(\mathrm{COOH})\right]^{-}$(the COOH group is opposite to the CO ligand)

76	-0.153717000	0.468903000	0.512197000
17	-2.097293000	1.445752000	1.853487000
17	-0.357340000	-1.655231000	1.858846000
6	-0.009043000	2.131270000	-0.386945000
6	1.363605000	-0.256690000	-0.361020000
8	0.068853000	3.172354000	-0.932286000
8	2.309766000	-0.717526000	-0.883603000
6	1.428155000	1.146112000	2.118479000
8	2.461396000	0.441430000	2.190531000
6	-1.399091000	-0.290494000	-0.786483000
8	-2.167942000	-0.738916000	-1.547307000
8	1.152050000	2.250196000	2.850317000
1	0.121531000	1.553019000	2.146242000

$\left[\mathrm{Os}(\mathrm{CO})_{3} \mathrm{Cl}_{2}(\mathrm{COOH})\right]^{-}$(the COOH group is opposite to Cl^{-})

76	-0.059202000	0.502054000	0.545961000
17	-1.966647000	1.560066000	1.967406000
17	-0.337246000	-1.645307000	1.932046000
6	0.126090000	2.071888000	-0.448696000
6	1.480763000	-0.394373000	-0.551938000
8	0.234292000	3.074236000	-1.071118000
8	1.996423000	0.044332000	-1.607465000
6	1.257481000	1.079777000	1.895659000
8	2.035092000	1.396380000	2.711199000
6	-1.416797000	-0.203391000	-0.687981000
8	2.029197000	-1.591387000	-0.068146000
1	1.530910000	-1.906869000	0.729315000
8	-2.249517000	-0.637496000	-1.387397000

76	0.015794000	0.431533000	0.642004000
17	-2.008767000	1.609772000	1.775251000
17	-0.578471000	-1.688431000	1.914368000
6	0.439670000	2.005238000	-0.319322000
6	1.356583000	-0.513658000	-0.881732000
8	0.699204000	2.987180000	-0.916845000
8	1.204633000	-0.298324000	-2.104912000
6	1.129450000	1.062656000	2.124872000
8	1.735257000	1.436677000	3.052848000
6	-1.359261000	-0.282160000	-0.639704000
8	2.265112000	-1.278307000	-0.288900000
1	1.456027000	-0.565249000	0.782505000
8	-2.196147000	-0.713044000	-1.323907000

$\left[\mathrm{Os}(\text { bipy })(\mathrm{CO}) \mathrm{Cl}_{2}(\mathrm{COOH})\right]^{-}$

76	1.286658000	5.599103000	13.014583000
17	2.631154000	6.185324000	15.065689000
17	0.043374000	5.229799000	10.831790000
8	3.811447000	3.990614000	12.660532000
8	-0.562230000	3.718585000	14.537181000
7	2.416905000	7.129628000	11.948940000
7	0.201301000	7.436694000	13.378228000
6	1.958013000	8.419924000	12.064845000
6	3.508294000	6.878289000	11.180471000
1	3.822375000	5.845229000	11.113258000
6	4.196262000	7.893257000	10.513476000
1	5.059098000	7.647104000	9.911732000
6	3.746358000	9.214563000	10.640844000
6	2.616914000	9.477033000	11.420138000
6	0.149001000	9.842027000	13.112614000
6	-1.014749000	9.915569000	13.882716000
6	-1.564441000	8.732291000	14.396789000
1	-2.463613000	8.743040000	14.996064000
6	-0.933306000	7.518137000	14.126427000
1	-1.329061000	6.585587000	14.504989000
6	0.745043000	8.595177000	12.871358000
6	2.552405000	4.072208000	12.529238000
6	0.187524000	4.451746000	13.931413000
1	2.250145000	10.488706000	11.519165000
1	4.259979000	10.022782000	10.137858000
1	0.588095000	10.743228000	12.707258000
1	-1.480585000	10.872513000	14.075105000
8	2.001820000	2.898330000	11.910165000
1	1.050282000	3.061176000	11.712958000

TS for decarboxylation of $\left[\mathrm{Os}(\text { bipy })(\mathrm{CO}) \mathrm{Cl}_{2}(\mathrm{COOH})\right]^{-}$

76	1.230096000	5.544666000	12.980380000
17	2.491333000	6.157784000	15.053170000
17	-0.322130000	5.599919000	10.943510000
8	3.928798000	4.014807000	13.155565000
8	-0.502927000	3.587535000	14.545831000
7	2.376846000	7.061737000	11.922031000
7	0.161942000	7.423061000	13.377487000
6	1.936144000	8.358907000	12.042429000
6	3.465674000	6.797532000	11.153831000
1	3.765916000	5.761996000	11.074344000
6	4.167320000	7.803627000	10.489027000
1	5.027515000	7.546065000	9.888286000

6	3.735229000	9.129425000	10.618599000
6	2.608907000	9.406366000	11.398291000
6	0.167990000	9.818046000	13.110240000
6	-0.986325000	9.914228000	13.893326000
6	-1.560713000	8.747225000	14.413864000
1	-2.452545000	8.779557000	15.022948000
6	-0.958053000	7.518867000	14.135920000
1	-1.363911000	6.592846000	14.519867000
6	0.730791000	8.558548000	12.859447000
6	2.764384000	4.085506000	12.655133000
6	0.186900000	4.349916000	13.923566000
1	2.257387000	10.423356000	11.497881000
1	4.260731000	9.931744000	10.118805000
1	0.622508000	10.711968000	12.707032000
1	-1.425977000	10.881633000	14.094032000
8	2.365337000	3.201428000	11.682641000
1	1.293192000	4.231265000	11.837567000

$\left[\mathrm{Os}(\text { bipy })(\mathrm{CO}) \mathrm{Cl}_{2}\left(\mathrm{COOH} . . . \mathrm{OH}_{2}\right)\right]^{-}$

76	1.529749000	5.654959000	12.852308000
17	2.758381000	6.218530000	14.981326000
17	0.424258000	5.457471000	10.565649000
8	4.170258000	4.330343000	12.390433000
8	-0.280679000	3.696604000	14.313919000
7	2.614992000	7.322007000	11.938665000
7	0.314477000	7.405751000	13.261149000
6	2.053040000	8.568967000	12.081248000
6	3.769301000	7.191397000	11.235968000
1	4.166066000	6.188109000	11.156268000
6	4.417979000	8.285549000	10.660370000
1	5.336396000	8.132971000	10.111691000
6	3.857769000	9.561215000	10.809341000
6	2.664600000	9.701063000	11.522866000
6	0.093156000	9.808438000	13.092776000
6	-1.104884000	9.761411000	13.810633000
6	-1.584808000	8.519740000	14.251652000
1	-2.506659000	8.437572000	14.809746000
6	-0.851733000	7.369320000	13.961582000
1	-1.190772000	6.393626000	14.282991000
6	0.790887000	8.620275000	12.827636000
6	2.899150000	4.209094000	12.371941000
6	0.453725000	4.441462000	13.698628000
1	2.213467000	10.676429000	11.639633000
1	4.336129000	10.428757000	10.375130000
1	0.480952000	10.756736000	12.747137000
1	-1.649513000	10.671492000	14.022007000
8	2.499848000	2.918603000	11.952487000
1	1.503227000	2.807594000	11.861834000
8	-0.699339000	2.487594000	11.432287000
1	2.306523000	12.187812000	
1	3.37506000	3.376276000	11.065088000

TS for decarboxylation of $\left[\mathrm{Os}(\text { bipy })(\mathrm{CO}) \mathrm{Cl}_{2}\left(\mathrm{COOH} . . . \mathrm{OH}_{2}\right)\right]^{-}$

76	1.375686000	5.645407000	12.863627000
17	2.392848000	6.214699000	15.116608000
17	0.154519000	5.678658000	10.624772000
8	4.198645000	4.698062000	12.722669000
8	-0.569773000	3.673134000	14.107010000
7	2.501763000	7.270903000	11.906166000
7	0.229945000	7.470971000	13.280845000
6	2.006094000	8.541280000	12.068872000

3.546105000 3.879917000 4.165804000 4.994846000 3.693917000 2.598827000 0.233433000 -0.929508000 -1. 512408000 -2.413218000 -0.904774000 -1.317289000 0.799664000 3.002184000 0.225909000 2.198698000 4.155503000 0.698489000
-1.368817000 2.819249000 1.774566000 1.564809000 0.672224000 1.674245000
7.072044000 6.048714000 8.125061000 7.919025000 9.429534000 9.636316000 9.884221000 9.894706000 8.676019000 8.641183000 7.485936000 6.523499000 8.658168000 4.244186000 4.442485000 10.630536000 10.266162000 10.814165000 10.834055000 3.008372000 2.374166000 3.004176000 2.870206000 4.099295000
11.062518000 10.965526000 10.385370000 9.723480000 10.580740000 11.424639000 13.278795000 14.054329000 14.428786000 15.024532000 14.024855000 14.297977000 12.899124000 12.954701000 13.619934000 11.565332000 10.073628000 12.981412000 14.361368000 13.391499000 11.842079000 11.105505000 10.729065000 11.698284000

$\left[\mathrm{Os}(\text { bipy })(\mathrm{CO}) \mathrm{I}_{2}(\mathrm{COOH})\right]^{-}$

76	1.269484000	5.589536000	12.952008000
53	2.693304000	6.188665000	15.329637000
53	-0.171936000	5.158142000	10.532890000
8	3.841891000	4.099654000	12.518353000
8	-0.639859000	3.732276000	14.424517000
7	2.411002000	7.143786000	11.909080000
7	0.182853000	7.440397000	13.326066000
6	1.962322000	8.436222000	12.052444000
6	3.496040000	6.902623000	11.126297000
1	3.800184000	5.868435000	11.039509000
6	4.190336000	7.926216000	10.480334000
1	5.047458000	7.685277000	9.868031000
6	3.756175000	9.248594000	10.643822000
6	2.630795000	9.502130000	11.432087000
6	0.181344000	9.853800000	13.151623000
6	-0.979341000	9.922493000	13.925863000
6	-1.557359000	8.732336000	14.391737000
1	-2.456306000	8.739396000	14.991591000
6	-0.953295000	7.516512000	14.073268000
1	-1.367260000	6.577742000	14.415466000
6	0.750225000	8.604384000	12.860831000
6	2.570717000	4.074082000	12.520128000
6	0.139793000	4.450430000	13.838393000
1	2.273023000	10.514610000	11.555551000
1	4.277763000	10.064319000	10.162134000
1	0.640899000	10.760486000	12.783297000
1	-1.421085000	10.881229000	14.160798000
8	2.072154000	2.779739000	12.153771000
1	1.093140000	2.814154000	12.076292000

TS for decarboxylation of $\left[\mathrm{Os}(\text { bipy })(\mathrm{CO}) \mathrm{I}_{2}(\mathrm{COOH})\right]^{-}$

76	-0.178519000
53	-2.841577000
53	2.631437000
8	-1.775000000

-0.656415000
0.386862000
-1.011151000
-2.154449000
-0.136874000 -0.041999000
-0.535045000
2.047498000
-2.252960000
0.650008000
1.285971000
1.951168000
0.229527000
-0.806105000
1.078767000
0.696998000
2.410643000
2.846941000
3.611109000
3.863511000
2.808194000
2.961668000
1.534778000
0.693917000
2.311854000
-2.173732000
-1.637973000
3.866693000
3.092673000
4.413914000
4.862824000
-3.240066000
-2.188460000

7. X-ray investigations

Crystals of complexes Os8 and Os12 were obtained by slow interdiffusion of a two-phase system comprising hexane and a solution of the complex in dichloromethane (for $\mathbf{O s 8}$) and acetone (for Os12). X-ray diffraction data were collected at 120 K with APEX2 DUO CCD diffractometer using graphite monochromic $\mathrm{Mo}-\mathrm{K} \alpha$ radiation ($1 \lambda=0.71073 \AA, \omega$-scans). Using Olex2, ${ }^{16}$ the structures were solved with the ShelXT structure solution program ${ }^{17}$ using Intrinsic Phasing and refined with the XL refinement package ${ }^{18}$ using Least Squares minimization. Positions of hydrogen atoms were calculated, and they all were refined in the isotropic approximation within the riding model. Crystallographic data and structure refinement parameters are listed in Table S14. CCDC 2075332 and 2075331 contain the supplementary crystallographic data for Os8 and Os12, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Table S14. Crystallographic data and structure refinement parameters for Os8 and Os12.

Compound	Os8	Os12
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Os}$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{ClNO}_{2} \mathrm{Os}$
Molecular weight	649.51	600.13
Crystal system	Monoclinic	Monoclinic
Space group	$P 2_{1} / n$	$P 2_{1} / c$
$a(\AA)$	$6.961(3)$	$9.4652(9)$
$b(\AA)$	$19.454(7)$	$9.6082(9)$
$c(\AA)$	$16.217(6)$	$24.647(3)$
$\beta($ deg $)$	$95.607(8)$	$90.999(3)$
$V\left(\AA^{3}\right)$	$2185.4(14)$	$2241.1(4)$
Z	4	4
$D_{\text {calcd }}(\mathrm{g} \mathrm{cm}$		
2$)$	1.974	1.779
$2 \theta_{\text {max }}($ deg $)$	58	54
$\mu($ Mo- $K \alpha)\left(\mathrm{cm}{ }^{-3}\right)$	5808	58.31
Collected reflections	12741	

Independent reflections	$5808\left(R_{\text {int }}=0.0597\right)$	$4884\left(R_{\text {int }}=0.0670\right)$
Observed reflections $(I>2 \sigma(I))$	3768	3625
Parameters	299	276
R_{1} (on F for obs. refls)	0.0765	0.0404
$w R_{2}$ (on F^{2} for all refls)	0.1486	1176
$F(000)$	1248	0.969
GOF	1.072	1.296 and -1.148
Largest diff. peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	1.939 and -1.029	

8. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and HRMS of the obtained osmium complexes.

$\left[\left(\boldsymbol{\eta}^{\mathbf{6}} \text {-cymene) } \mathbf{O s I}_{\mathbf{2}}\right]_{\mathbf{2}} \mathbf{O s 2}{ }^{1} \mathrm{H}\right.$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left[\left(\boldsymbol{\eta}^{6}\right.\right.$-cymene) $\mathbf{O s I}_{\mathbf{2}} \mathbf{1}_{\mathbf{2}} \mathbf{O s 2}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Display Report

Analysis Info

Analysis Name D:Data\Kolotyrkinal2021'Loginovi0119025.d Method
Sample Name
Comment
tune_ $50-1600 . \mathrm{m}$
/NGKO LD-32
C 20 H 2814 O 2 calibrant added CH 3 CN

Acquisition Date 19.01 . 2021 13:24:27
Operator BDAL*DE Instrument/ Ser\# micrOTOF 10248

[$\left(\boldsymbol{\eta}^{6}\right.$-cymene) $\mathbf{O s} \mathbf{(2 , 2} \mathbf{2}$-bipyridine) $\left.\mathbf{C l}\right] \mathbf{C l}$ Os3 ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Display Report

[($\boldsymbol{\eta}^{6}$-cymene) $\mathbf{O s}($ Bphen $\left.) \mathbf{C l}\right] \mathbf{C l}$ Os4 ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

$\left[\left(\eta^{6}\right.\right.$-cymene) Os(Bphen)Cl]Cl Os4 ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right)$

Display Report

[$\boldsymbol{\eta}^{6}$-cymene) $\left.\mathbf{O s}(\mathbf{B p h e n}) \mathbf{C l}\right] \mathbf{B P h} \mathbf{H}_{4} \mathbf{O s 5}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[$\left(\boldsymbol{\eta}^{6}\right.$-cymene) $\mathbf{O s}$ (Bphen) $\left.\mathbf{C l}\right] \mathbf{B P h}_{4} \mathbf{O s 5}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Display Report

$\left[\left(\boldsymbol{\eta}^{6}\right.\right.$-cymene) Os(Bphen)I]PF $\mathbf{6}^{\mathbf{O s 6}}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left[\left(\boldsymbol{\eta}^{6}\right.\right.$-cymene) Os(Bphen)I]PF $\mathbf{6}$ Os6 ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Display Report

Display Report

Analysis Info
Analysis Name D:DataKKolotyrkina\2021 LLoginovi0112011.d Method tune_50-1600.m
Sample Name /NGKO LG-31
Comment
C 34 H 30 N 2 O 31 callbrant added CH 3 CN

Acquisition Date 12.01 .2021 12:19:10
Operator \quad BDAL@DE
Instrument / Serk micrOTOF 10248

(2,2'-bipyridine) $\left.\mathbf{O s C l}_{\mathbf{2}} \mathbf{(C O}\right)_{\mathbf{2}} \mathbf{O s} \mathbf{O}^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2,2'-bipyridine) $\left.\mathbf{O s C l}_{\mathbf{2}} \mathbf{(C O}\right)_{\mathbf{2}} \mathbf{O s} \mathbf{7 ~}^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

Display Report

Analysis Info		Acquisition Date	17.11.2020 17:25:47		
Analysis Name	D:DatalKolotyrkinal2020:Loginovi1117035.d				
Method	tune $50-1600 . \mathrm{m}$		Operator	BDAL@DE	
Sample Name	NGKO LD-22	Instrument/Ser\# micrOTOF	10248		
Comment	C10H8CIOs mH 355.9991clb added CH3CN				

(Bphen) $\left.\mathbf{O s C l}_{\mathbf{2}} \mathbf{(C O}\right)_{2} \mathbf{O s 8}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(Bphen) $\mathbf{O s C l}_{\mathbf{2}}(\mathbf{C O})_{\mathbf{2}} \mathbf{O s 8}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

```
@ \
N゙N
```


[^0]
Display Report

(2,2'-bipyridine) $\mathbf{2}_{\mathbf{2}} \mathbf{O s C l}_{\mathbf{2}} \mathbf{~ O s 9}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$)

Display Report

Analysis Info
Analysis Name
Data|Kolotyrkinal2020LLoginovi1124031.

Sample Name /NGKO LD-24
Comment

C 20 H 16 Cl 2 N 4 Os m 518.0218 calibrant added CH 3 CN

Acquisition Date 24.11.2020 17:03:08

Operator BDAL@DE Instrument / Ser\# micrOTOF 10248

(2,2'-bipyridine) $\mathbf{2}_{\mathbf{2}} \mathbf{O s C l}_{\mathbf{3}} \mathbf{O s} \mathbf{O} \mathbf{~}^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

Display Report

[($\boldsymbol{\eta}^{\mathbf{6}}$-cymene) $\mathbf{O s}(\mathbf{N}, \mathbf{C}-$ napht) $\mathbf{C l}] \mathbf{O s 1 1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[($\boldsymbol{\eta}^{\mathbf{6}}$-cymene) $\mathbf{O s}(\mathbf{N}, \mathbf{C}-$ napht) $\mathbf{C l}] \mathbf{O s} \mathbf{1 1}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Display Report

Analysis Info

Analysis Name Method
Sample Name Comment

D:Data/Kolotyrkinal20201Loginovi1208041.d
tune_50-1600.m
/NGKO LD-29
C 27 H 26 NOsCl calibrant added CH 3 CN

Acquisition Date 08.12.2020 16:50:53

Operator BDAL@DE
Instrument / Ser\# micrOTOF 10248

[$\left(\boldsymbol{\eta}^{6}\right.$-cymene) $\left.\mathbf{O s}(\mathbf{N}, \mathbf{C}-\mathbf{a n i s}) \mathbf{C l}\right] \mathbf{O s 1 2}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[$\left(\boldsymbol{\eta}^{6}\right.$-cymene) $\left.\mathbf{O s}(\mathbf{N}, \mathbf{C}-\mathbf{a n i s}) \mathbf{C l}\right] \mathbf{O s 1 2}{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
230	220	210	200	190	180	170	160	150	140	130			100	90	80	70	60	50	40	30	20	10	0	-10

Display Report

Analysis Info		Acquisition Date	17.11.2020 17:39:23	
Analysis Name	D: DataVKolotyrkina)2020 Loginovi1117036.d			
Method	tune_50-1600.m	Operator	BDAL*DE	
Sample Name	/NGKO LD-23	Instrument / Ser*	microtof	10248
Comment	C 25 H 28 NO 2 Os mH 567.1808 clb added CH 3 CN			

9. $\quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the RA products.

4-methoxy-N-(4-methoxybenzyl)aniline (1) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

methoxy-N-(4-methoxybenzyl)aniline (1) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-methoxy-N-(3-methoxybenzyl)aniline (2) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-methoxy-N-(3-methoxybenzyl)aniline (2) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-methoxy-N-(2-methoxybenzyl)aniline (3) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-methoxy-N-(2-methoxybenzyl)aniline (3) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\mathbf{N}-(4-chlorobenzyl)-4-methoxyaniline (4) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(4-chlorobenzyl)-4-methoxyaniline (4) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

T	1	1	1	1	T	1	1	T	T	1	T	,	1	1	1	1	1	1	1	1	
!10	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	C

\mathbf{N}-(3-chlorobenzyl)-4-methoxyaniline (5) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\mathbf{N}-(3-chlorobenzyl)-4-methoxyaniline (5) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]N-(4-(benzyloxy)benzyl)-4-methoxyaniline (6) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\mathbf{N}-(4-(benzyloxy)benzyl)-4-methoxyaniline (6) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-isopropyl-4-methoxyaniline (7) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-isopropyl-4-methoxyaniline (7) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-(4-methoxyphenyl)adamantan-2-amine (8) ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\mathbf{N}-(4-methoxyphenyl)adamantan-2-amine (8) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(4-phenylbutan-2-yl)-morpholine (9) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(4-phenylbutan-2-yl)-morpholine (9) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl-4-phenylbutan-2-amine (10) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzyl-4-phenylbutan-2-amine (10) ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3})

N-benzylcyclopentanamine (11) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N-benzylcyclopentanamine (11) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(2-phenylpropyl)morpholine (12) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(2-phenylpropyl)morpholine (12) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(3-(4-isopropylphenyl)-2-methylpropyl)morpholine (13) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(3-(4-isopropylphenyl)-2-methylpropyl)morpholine (13) ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(101} \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(

Display Report

Analysis Info
Analysis Name D:Data\Kolotyrkina'2021\Novikov10414023.d
Method
D:DataVKolotyrkina'2021/Novikov10414023.d
tune $50-1600 . \mathrm{m}$ tune_50-1600.m
$/ \mathrm{MNOV}$ LB-05-iPr
C17H27NO mH 262.2165 calibrant added CH 3 CN
Sample Nam

Acquisition Date 14.04.2021 16:14:00
Operator BDAL要DE Instrument / Ser\# micrOTOF 10248

17 H2er

4-(4-methoxybenzyl)morpholine (14) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
(

4-(4-methoxybenzyl)morpholine (14) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine (15) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine (15) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

10. References

M. M. Vinogradov, Y. N. Kozlov, D. S. Nesterov, L. S. Shul'pina, A. J. L. Pombeiro and G. B. Shul'pin, Catal. Sci. Technol., 2014, 4, 3214-3226.
E. Z. Jandrasics and F. Richard Keene, J. Chem. Soc. Dalt. Trans., 1997, 153-160.
D. A. Buckingham, F. P. Dwyer, H. A. Goodwin and A. M. Sargeson, Aust. J. Chem., 1964, 17, 325-336.
P. N. Kolesnikov, N. Z. Yagafarov, D. L. Usanov, V. I. Maleev and D. Chusov, Org. Lett., 2015, 17, 173-175.
E. Kuchuk, K. Muratov, D. S. Perekalin and D. Chusov, Org. Biomol. Chem., 2019, 17, 83-87. C. Zhu and T. Akiyama, Synlett, 2011, 2011, 1251-1254.
V. B. Kharitonov, E. Podyacheva, Y. V Nelyubina, D. V Muratov, A. S. Peregudov, G. Denisov, D. Chusov and D. A. Loginov, Organometallics, 2019, 38, 3151-3158.
Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue and J. Xiao, Chem. - A Eur. J., 2013, 19, 40214029.
L.-Y. Fu, J. Ying, X. Qi, J.-B. Peng and X.-F. Wu, J. Org. Chem., 2019, 84, 1421-1429.
O. I. Afanasyev, D. L. Usanov and D. Chusov, Org. Biomol. Chem., 2017, 15, 10164-10166. Y. Otake, J. D. Williams, J. A. Rincón, O. de Frutos, C. Mateos and C. O. Kappe, Org. Biomol. Chem., 2019, 17, 1384-1388.
N. Z. Yagafarov, D. L. Usanov, A. P. Moskovets, N. D. Kagramanov, V. I. Maleev and D. Chusov, ChemCatChem, 2015, 7, 2590-2593.

Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
A. V Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl.

Crystallogr., 2009, 42, 339-341.
17 G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3-8.
18
G. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.

[^0]:

[^1]:

