Supporting Information

1.	GENERAL INFORMATION2
2.	SYNTHESIS OF OSMIUM COMPLEXES
	CATALYST SCREENING AND CONDITIONS OPTIMIZATION: REACTION OF 4- THOXYBENZALDEHYDE WITH 4-METHOXYANILINE10
4.	MECHANISTIC INVESTIGATIONS
5.	SYNTHESIS AND CHARACTERIZATION OF THE RA PRODUCTS24
6.	DETAILS OF DFT CALCULATIONS
7.	X-RAY INVESTIGATIONS
	¹ H AND ¹³ C NMR SPECTRA AND HRMS OF THE OBTAINED OSMIUM MPLEXES40
9.	¹ H AND ¹³ C NMR SPECTRA OF THE RA PRODUCTS64
10.	REFERENCES

1. General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification, THF was distilled over sodium/benzophenone.

Isolation of products was performed using column chromatography (Acros Organics, silica gel 0.06-0.200 mm) or using preparative flash chromatograph InterChim PuriFlash; DCM-MeOH binary system was used as an eluent. All details about particular chromatographic parameters are provided with the description of each compound.

¹H, ¹³C, and ¹⁹F spectra were recorded in CDCl₃ on Bruker Avance 300, Bruker Avance 400, or Varian Inova 400 spectrometers. Chemical shifts are reported in parts per million relative to CHCl₃ (7.26 and 77.16 ppm for ¹H and ¹³C respectively). The following abbreviations were used to designate chemical shift multiplicities: s = singlet, d = doublet, dd = doublet of dublets, t = triplet, q = quartet, quint. = quintet, m = multiplet, br = broad, sept = septet; coupling constants are given in Hertz (Hz). NMR yields were determined with reference to an internal standard (dimethyl formamide).

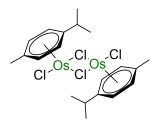
High-resolution mass spectra (HRMS) were registered on a Bruker Daltonics micrOTOF-Q II hybrid quadrupole time-of-flight mass spectrometer using electrospray ionization (ESI); measurements were done in a positive ion mode. The voltage on the capillary was 4500 V; range of scanned masses, m/z 50-3000; external calibration (Electrospray Calibrant Solution; Fluka, Germany); nebulizer pressure: 0.4 bar; flow rate: 3 µl/min; nitrogen as dry gas (6 l/min); interface temperature: 180 °C.

Analytical gas chromatography (GC) was performed using a Chromatec Crystal 5000.2 gas chromatograph fitted with a flame ionization detector (He was used as the carrier gas, 37 mL/min) and a MS detector. Chromatec CR-5 and Chromatec CR-5MS (30 meters) capillary column were used.

GC settings for the yield determination using FID detector and CR5 column:

The injector temperature was 250 °C, split ratio of 50:1 at the moment of injection, the FID temperature was 250 °C. Column compartment temperature program: 100°C for 2 min, 100°C \rightarrow 280°C at 30°C/min, 280°C for 3 min. Flow rate 2 mL/min, column CR-5. Retention time for 4-methoxy-N-(4-methoxybenzyl)aniline is 10.2 min; for N,1-bis(4-methoxyphenyl)methanimine 10.4 min; for 4-methoxyaniline 5.5 min.

GC settings for the qualitative analysis using MS detector and CR5-ms column:

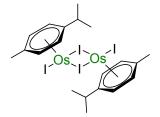

The injector temperature was 250 °C, split ratio of 75:1 at the moment of injection. Column compartment temperature program: 60°C for 4 min, 60°C \rightarrow 250°C at 30°C/min, 250°C for 12 min. Flow rate 1 mL/min. MSD parameters: ion source temperature 200°C, transfer line temperature 230°C. Retention times (t_R) and integrated ratios were obtained using Chromatec Analytic Software.

Reactions with pressure were carried out in autoclaves made from either stainless steel or titanium. The autoclave material had no effect on the reactions.

2. Synthesis of osmium complexes

Complexes **Os1** [(Cymene)OsCl₂]₂¹, **Os7** (2,2'-bipyridine)OsCl₂(CO)₂², **Os9** (2,2'-bipyridine)₂OsCl₂³, **Os10** [(2,2'-bipyridine)₂OsCl₂]Cl³ were prepared as described in the literature.

$[(\eta^6\text{-cymene})OsCl_2]_2(Os1)$

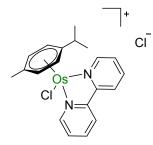


A mixture of Na₂OsCl₆ (300 mg, 0.67 mmol), 1.5 ml of γ -terpinene (9.2 mmol) in EtOH (4 ml) was heated in a sealed tube at 100 °C for 4 hours under argon atmosphere. The reaction mixture was cooled to room temperature and evaporated to dryness *in vacuo*. The orange product was crushed in hexane, filtered off, washed with water and dried. Yield:209 mg (79 %).

¹H NMR (400 MHz, CDCl₃) δ 6.20 (d, J = 6.4 Hz, 2H, Ar-H), 6.05 (d, J = 6.4 Hz, 2H, Ar-H), 2.80 (sept, J = 7.0 Hz, 1 H, C<u>H</u>(Me)₂), 2.22 (s, 3H, CH₃C), 1.31 (d, J = 7.0 Hz, 6H, CH(<u>CH₃</u>)₂).

The obtained NMR data are in agreement with the literature report.¹

$[(\eta^6\text{-cymene})OsI_2]_2(Os2)$

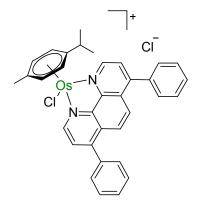

A mixture of $[(\eta^6\text{-cymene})OsCl_2]_2$ (100 mg, 0.126 mmol) and NaI*2H₂O (300 mg, 1.61 mmol) was stirred in acetone (5 ml) at 100 °C in a sealed tube for 24 hours. The solvent was removed from the resulting dark-brown reaction mixture *in vacuo* and the residue was washed with water and dried. The product was extracted with CH₂Cl₂, precipitated by adding Et₂O, filtered off and air-dried to afford 128 mg (88%) of red-brown crystals.

¹H NMR (400 MHz, CDCl₃) δ 6.06 (d, J = 5.5 Hz, 2H, Ar-H), 5.95 (d, J = 5.5 Hz, 2H, Ar-H), 2.84 (sept, J = 6.8 Hz, 1H, C**H**(Me)₂), 2.32 (s, 3H, CH₃C), 1.25 (d, J = 6.9 Hz, 6H, CH(**CH**₃)₂).

¹³C NMR (101 MHz, CDCl₃) δ 96.1 (<u>C_{Ar}-C</u>), 90.4 (<u>C_{Ar}-C</u>), 75.3 (C_{Ar}-H), 75.2 (C_{Ar}-H), 31.7 (C<u>H</u>(Me)₂), 22.8 (CH(<u>CH₃</u>)₂), 20.6 (CH₃Ar).

HRMS (ESI-MS): calcd. for $C_{12}H_{17}NOsI^+$, [(η^6 -cymene)Os(CH₃CN)I]⁺ 494.0015, found 494.0013

[(η⁶-cymene)Os(2,2'-bipyridine)Cl]Cl (Os3)

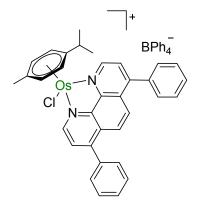

A solution of 2,2'-bipyridine (21 mg, 0.14 mmol) and $[(\eta^6\text{-cymene})\text{OsCl}_2]_2$ (51 mg, 0.07 mmol) in methanol (3 ml) was stirred for 2 h at room temperature. The solvent volume was reduced *in vacuo* to ~0.5 ml and product crystallization was induced by the addition of Et₂O. A formed yellow precipitate was recovered by filtration, washed with Et₂O and air-dried. Yield 61 mg (86%).

¹H NMR (400 MHz, CD₃OD) δ 7.84 (d, J = 5.5 Hz, 2H, Ar-H (Bipy)), 7.03 (d, J = 8.1 Hz, 2H, Ar-H (Bipy)), 6.64 (t, J = 7.8 Hz, 2H, Ar-H (Bipy)), 6.14 (t, J = 6.6 Hz, 2H, Ar-H (Bipy)), 4.75 (d, J = 5.7 Hz, 2H, Ar-H (cymene)), 4.43 (d, J = 5.7 Hz, 2H, Ar-H (cymene)), 0.90 (sept, J = 6.9 Hz, 1H, C<u>H</u>(Me)₂), 0.75 (s, 3H, CH₃C), -0.61 (d, J = 6.9 Hz, 6H, CH(<u>CH₃</u>)₂).

¹³C NMR (75 MHz, CD₃OD) δ 157.1 (C_{Ar} (Bipy)), 156.8 (C_{Ar} (Bipy)), 141.2 (C_{Ar} (Bipy)), 129.6 (C_{Ar} (Bipy)), 125.1 (C_{Ar} (Bipy)), 99.0 (C_{Ar}-C (cymene)), 96.8 (C_{Ar}-C (cymene)), 79.7 (C_{Ar}-H (cymene)), 75.4 (C_{Ar}-H (cymene)), 32.6 (C<u>H</u>(Me)₂), 22.6 (CH(<u>CH</u>₃)₂), 18.9 (CH₃Ar).

HRMS (ESI-MS): calcd. for $C_{20}H_{22}N_2OsCl^+$ [M]⁺ 517.1071, found 517.1068.

[(n⁶-cymene)Os(Bphen)Cl]Cl (Os4)

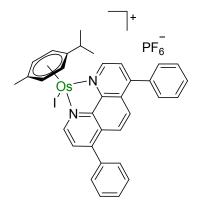

A mixture of $[(\eta^6\text{-cymene})OsCl_2]_2$ (29 mg, 0.037 mmol) and bathophenanthroline (27 mg, 0.081 mmol) was stirred in acetone (3 ml) for 1 hour at room temperature. The reaction mixture was evaporated *in vacuo* to dryness and the product was recrystallized from CH₂Cl₂ – Et₂O. A formed yellow precipitate fwas recovered by filtration, washed with Et₂O and air-dried. Yield 61 mg (72%).

¹H NMR (400 MHz, CD₃OD) δ 8.25 (d, J = 5.6 Hz, 2H, CH=N), 6.59 (s, 2H, CH in the central ring), 6.43 (d, J = 5.6 Hz, 2H, CHCH=N), 6.17 – 5.97 (m, 10H, Ph-rings), 4.93 (d, J = 5.9 Hz, 2H, Ar-H (cymene)), 4.64 (d, J = 5.9 Hz, 2H, Ar-H (cymene)), 1.09 – 0.88 (m, 1H, CH(Me)₂), 0.76 (s, 3H, CH₃C), -0.58 (d, J = 6.9 Hz, 6H, CH(CH₃)₂).

¹³C NMR (101 MHz, CD₃OD) δ 156.5, 152.8, 148.6, 136.5, 131.2, 131.1, 130.4, 130.1, 128.2, 127.1, 79.1 (C_{Ar}-H (cymene)), 76.1 (C_{Ar}-H (cymene)), 32.5 (C<u>H</u>(Me)₂), 22.7 (CH(<u>CH₃</u>)₂), 18.9 (CH₃Ar (cymene)).

HRMS (ESI-MS): calcd. for $C_{34}H_{30}N_2OsCl^+$ [M]⁺ 693.1698, found 693.1701.

[(η⁶-cymene)Os(Bphen)Cl]BPh₄(Os5)


A mixture of $[(\eta^6\text{-cymene})OsCl_2]_2$ (29 mg, 0.037 mmol) and bathophenanthroline (27 mg, 0.081 mmol) was stirred in acetone (3 ml) for 1 hour at room temperature. Solution of NaBPh₄ (40 mg, 0.117 mmol) in water (10 ml) was added and acetone was removed *in vacuo*. The yellow product was filtered off, washed with water and air-dried. Subsequent recrystallization from CH₂Cl₂-Et₂O gave 64 mg of the product (86%).

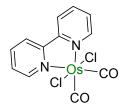
¹H NMR (400 MHz, CDCl₃) δ 8.87 (d, J = 5.1 Hz, 2H, CH=N), 8.04 (s, 2H, CH in the central ring), 7.62 – 7.57 (m, 6H), 7.52 – 7.44 (m, 14H), 6.96 (t, J = 7.3 Hz, 8H), 6.83 (t, J = 7.1 Hz, 4H), 5.59 (d, J = 5.1 Hz, 2H, Ar-H (cymene)), 5.31 (d, J = 5.1 Hz, 2H, Ar-H (cymene)), 2.38 – 2.31 (m, 1H, C<u>H</u>(Me)₂), 2.02 (s, 3H, CH₃C), 0.93 (d, J = 6.8 Hz, 6H, CH(<u>CH₃</u>)₂).

¹³C NMR (101 MHz, CDCl₃) δ 163.2 (m appears as 4 peaks with equel intensity – <u>C</u>(Ph)-B), 154.4, 151.3, 147.3, 136.5, 134.7, 130.3, 130.0, 129.4, 128.7, 127.4, 126.0, 125.9, 122.2, 96.4 (C_{Ar}-C (cymene)), 94.9 (C_{Ar}-C (cymene)), 77.4 (C_{Ar}-H (cymene)), 75.1 (C_{Ar}-H (cymene)), 31.3 (<u>C</u>H(Me)₂), 22.5 (CH(<u>CH₃)₂), 18.7 (CH₃Ar (cymene)).</u>

HRMS (ESI-MS): calcd. for $C_{34}H_{30}N_2OsCl^+$ [M]⁺ 693.1698, found 693.1699.

[(n⁶-cymene)Os(Bphen)I]PF₆(Os6)

A mixture of $[(\eta^6\text{-cymene})\text{OsI}_2]_2(31 \text{ mg}, 0.027 \text{ mmol})$ and bathophenanthroline (19 mg, 0.057 mmol) was stirred in acetone (3 ml) for 1 hour at 50 °C. Then a solution on KPF₆ (25 mg, 0.136 mmol) in

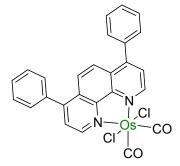

water (10 ml) was added and acetone was removed *in vacuo*. The red-orange product was filtered off, washed with water and air-dried. Subsequent recrystallization from CH₂Cl₂-Et₂O gave 46 mg of the iodide (92%).

¹H NMR (400 MHz, CDCl₃) δ 9.63 (d, J = 5.6 Hz, 2H, CH=N), 8.09 (s, 2H, CH in the central ring), 7.92 (d, J = 5.6 Hz, 2H, C**H**CH=N), 7.58 (m, appears as br s, 10H, Ph rings), 6.23 (d, J = 5.8 Hz, 2H, Ar-H(cymene)), 6.07 (d, J = 5.8 Hz, 2H, Ar-H(cymene)), 2.81 (sept, J = 6.8 Hz, 1H, C**H**(Me)₂), 2.40 (s, 3H, CH₃C), 1.08 (d, J = 6.8 Hz, 6H, CH(**CH**₃)₂).

¹³C NMR (101 MHz, CDCl₃) δ 155.7, 150.7, 147.0, 134.6, 129.8, 129.0, 128.5, 126.9, 125.7, 98.3 (C_{Ar}-C (cymene)), 93.66 (C_{Ar}-C (cymene)), 76.52 (C_{Ar}-H (cymene)), 76.48 (C_{Ar}-H (cymene)), 31.6 ((CH₃)₂<u>CH</u>Ar (Cymene)), 22.1 ((<u>CH₃)₂CHAr (Cymene)), 19.7 (CH₃Ar (cymene)).</u>

HRMS (ESI-MS): calcd. for C₃₄H₃₀N₂OsI⁺ [M]⁺ 785.1065, found 785.1064.

(2,2'-bipyridine)OsCl₂(CO)₂ (Os7)

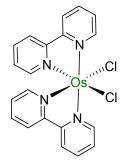

A 10 ml stainless steel autoclave was charged with Na₂OsCl₆ (61 mg, 0.136 mmol), 2,2'-bipyridine (22 mg, 0.138 mmol), formic acid (1.5 ml) and 37% formaldehyde in water (0.3 ml). The autoclave was sealed, flushed three times with 10 atm of CO, and then pressurized with 30 atm of CO. The reactor was placed into a preheated to 120°C oil bath. After 20h, the reactor was cooled to room temperature and depressurized. The solvent was removed from the reaction mixture *in vacuo* and the crude product was extracted by CH_2Cl_2 . Organic extracts were concentrated and the residue was purified using column chromatography (Al₂O₃ was used as stationary phase), eluent: CH_2Cl_2 . After concentrating the mixture *in vacuo* to ~1 ml, the complex was crystallized by addition of hexane. The formed yellow solid was filtered off and air-dried. Yield 14 mg (22%).

¹H NMR (400 MHz, CDCl₃) δ 9.14 (d, J = 5.4 Hz, 2H), 8.25 (d, J = 8.1 Hz, 2H), 8.17 – 8.10 (m, 2H), 7.79 – 7.53 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 177.4, 155.6, 153.1, 139.9, 128.1, 123.5.

HRMS (ESI-MS): calcd. for $C_{12}H_8N_2ClOsO_2^+$ [M – Cl]⁺ 438.9873, found 438.9863.

(Bphen)OsCl₂(CO)₂ (Os8)

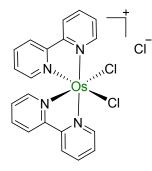

A 10 ml stainless steel autoclave was charged with Na₂OsCl₆ (61 mg, 0.136 mmol), bathophenanthroline (46 mg, 0.138 mmol), formic acid (1.5 ml) and 37% formaldehyde in water (0.3 ml). The autoclave was sealed, flushed three times with 10 atm of CO, and then pressurized with 30 atm of CO. The reactor was placed into a preheated to 120°C oil bath. After 20h, the reactor was cooled to room temperature and depressurized. The solvent was removed from the reaction mixture *in vacuo* and the crude product was extracted by CH₂Cl₂. Organic extracts were concentrated and the residue was purified using column chromatography (Al₂O₃ was used as stationary phase), eluent: CH₂Cl₂. After concentrating the mixture *in vacuo* to ~1 ml, the complex was crystallized by addition of hexane. The formed yellow solid was filtered off and air-dried. Yield 38 mg (43%).

¹H NMR (400 MHz, CDCl₃) δ 9.48 (d, *J* = 5.4 Hz, 2H, CH=N), 8.10 (s, 2H, CH in the central ring), 7.90 (d, *J* = 5.4 Hz, 2H, C<u>H</u>CH=N), 7.65 – 7.61 (m, 6H, Ph ring), 7.56 – 7.54 (m, 4H, Ph ring).

¹³C NMR (101 MHz, CDCl₃) δ 177.6 (C_q=N), 152.2 (CH=N), 147.4 (C_qPh), 135.2 (<u>C_q</u>C_qPh), 130.2, 129.7, 129.5, 129.4, 126.6, 126.1.

HRMS (ESI-MS): calcd. for $C_{26}H_{16}N_2OsCl_2O_2Na^+$ [M+Na]⁺ 672.9964, found 672.9985.

(2,2'-bipyridine)₂OsCl₂ (Os9)

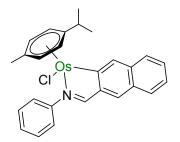


To a stirred solution of $[(bipy)_2OsCl_2]Cl$ (20 mg, 0.033 mmol) in methanol (4 ml) a solution of Na₂S₂O₄ (50 mg, 0.29 mmol) in water (1 ml) was added in one portion at room temperature. The color of a solution immediately changed from brown to mulberry-red. The mixture was stirred for 30 min. 3 ml of water was then added and the reaction mixture was stored at 6°C for an hour to complete crystallization of a product. Almost black solid precipitate of (bipy)₂OsCl₂ was filtered off, washed with water, methanol, dried and recrystallized from CH₂Cl₂ – hexane mixture. Yield 16 mg (85%).

¹H NMR (300 MHz, CD_2Cl_2) δ 8.71 (s, 2H), 8.26 (s, 2H), 8.16 (d, J = 7.5 Hz, 2H), 7.65 – 7.45 (m, 2H), 7.11 (s, 2H), 6.88 (s, 2H), 6.78 (s, 2H), 6.12 (s, 2H).

HRMS (ESI-MS) of both $(bipy)_2OsCl_2$ and $[(bipy)_2OsCl_2]Cl$ exhibits the only peak cluster corresponding to $[(bipy)_2OsCl_2]^+$. This could be assigned to the oxidation of $(bipy)_2OsCl_2$ during the analysis: calcd. for $C_{20}H_{16}N_4Cl_2Os^+$ 574.0342, found 574.0364.

(2,2'-bipyridine)₂OsCl₃ (Os10)

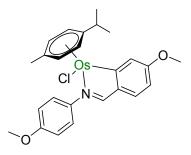


A mixture of Na₂OsCl₆ (147 mg, 0.33 mmol) and 2,2'-bipyridine (103 mg, 0.66 mmol) was refluxed in DMF (4 ml) under argon for 1 hour. The solution was cooled down and the formed NaCl was filtered off. The DMF was removed *in vacuo*, the product was extracted with methanol from the residue and diethyl ether was added to the extract. The crystallized brown [(bipy)₂OsCl₂]Cl was filtered off and recrystallized from methanol – diethyl ether once again. After filtration, washing with diethyl ether and drying 134 mg (67%) of [(bipy)₂OsCl₂]Cl was obtained.

¹H NMR (400 MHz, CD₃OD *all signals appear as broad singlets*) δ 21.98, 17.97, 11.98, 7.72, -7.28, -11.39, -44.00, -51.67.

HRMS (ESI-MS) of both $(bipy)_2OsCl_2$ and $[(bipy)_2OsCl_2]Cl$ exhibits the only peak cluster corresponding to $[(bipy)_2OsCl_2]^+$. calcd. for $C_{20}H_{16}N_4Cl_2Os^+$ 574.0342, found 574.0364.

[(η⁶-cymene)Os(N,C-napht)Cl] (Os11)

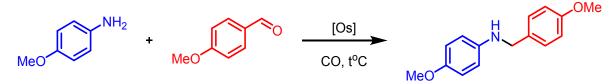

A mixture of $[(\eta^6\text{-cymene})\text{OsCl}_2]_2(31.7 \text{ mg}, 0.040 \text{ mmol})$, TIOAc (21.1 mg, 0.080 mmol) and Schiff base (0.084 mmol) was stirred in methanol (2 ml) at 100 °C in a sealed tube and under argon atmosphere for 4 hours. The solvent was removed from the reaction mixture *in vacuo*, the residue was separated on SiO₂ with CH₂Cl₂ as eluent. After removing of the solvents *in vacuo* the product was obtained as orange-red crystals. Yield 21 mg (44%).

¹H NMR (400 MHz, CDCl₃) δ 8.44 (br s, 1H, CH in *ortho*-position to Os), 8.35 (br s, 1H, CH in *ortho*-position to C=N group), 8.13 (br s, 1H, CH=N), 7.74 – 7.67 (m, 4H, Ar-H), 7.42 – 7.25 (m, 6H, Ar-H), 5.63 (br s, 1H, Ar-H(cymene)), 5.09 – 5.01 (m, 3H, Ar-H(cymene)), 2.23 (m, 1H, C<u>H</u>(Me)₂), 2.20 (s, 3H, CH₃Ar), 0.95 (br s, 3H, CH₃C), 0.75 (br s, 3H, CH₃C).

¹³C NMR (101 MHz, CDCl₃) δ 174.7, 163.9, 155.5, 147.4, 136.2, 130.8, 129.1, 127.9, 126.7, 123.8, 123.0, 96.6, 90.9, 83.9, 80.6, 72.9, 71.3, 31.2 ((CH₃)₂CHAr (Cymene)), 23.6 ((CH₃)₂CHAr (Cymene)), 21.7 ((CH₃)₂CHAr (Cymene)), 18.8 (CH₃Ar (cymene)).

HRMS (ESI-MS): calcd. for $C_{27}H_{26}NOsCl^+$ [M]⁺ 591.1353, found 591.1349.

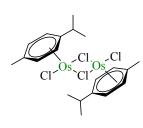
[(n⁶-cymene)Os(N,C-anis)Cl] (Os12)

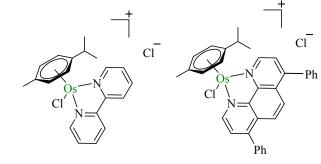

A mixture of $[(\eta^6\text{-cymene})\text{OsCl}_2]_2(31.7 \text{ mg}, 0.040 \text{ mmol})$, TIOAc (21.1 mg, 0.080 mmol) and Schiff base (0.084 mmol) was stirred in methanol (2 ml) at 100 °C in a sealed tube and under argon atmosphere for 4 hours. The solvent was removed from the reaction mixture *in vacuo*, the residue was separated on SiO₂ with CH₂Cl₂ as eluent. After removing of the solvents *in vacuo* the product was obtained as orange-red crystals. Yield 41 mg (86%).

¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H, CH=N), 7.73 – 7.41 (m, 4H, Ar-H in *ortho*-position to N=C group + Ar-H in ortho position to OMe in the anisaldehyde moiety), 6.88 (d, *J* = 8.8 Hz, 2H, Ar-H in *ortho*-position to OMe group in anisidine moiety), 6.55 (dd, *J* = 8.4, 2.4 Hz, 1H, Ar-H in *ortho*-position to C=N group), 5.50 (d, *J* = 5.5 Hz, 1H, Ar-H(cymene)), 5.04 (dd, *J* = 8.4, 4.8 Hz, 3H, Ar-H(cymene)), 3.90 (s, 3H, CH₃O), 3.86 (s, 3H, CH₃O), 2.29 (sept, 6.9 Hz, 1H, C<u>H</u>(Me)₂), 2.17 (s, 3H, CH₃Ar), 0.97 (d, *J* = 6.9 Hz, 3H, CH₃C), 0.81 (d, *J* = 6.9 Hz, 3H, CH₃C).

¹³C NMR (101 MHz, CDCl₃) δ 176.4, 172.0, 161.7, 158.6, 149.1, 140.9, 131.1, 124.0, 122.9, 113.8, 109.2, 95.9, 90.7, 83.2, 79.9, 73.9, 71.9, 55.7 (CH₃O), 55.2 (CH₃O), 31.3 ((CH₃)₂CHAr (Cymene)), 23.5 ((CH₃)₂CHAr (Cymene)), 21.7 ((CH₃)₂CHAr (Cymene)), 18.7 (CH₃Ar (Cymene)).

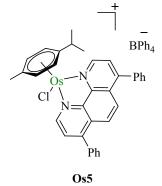
HRMS (ESI-MS): calcd. for C₂₅H₂₈NO₂OsCl⁺ [M]⁺ 601.1415, found 601.1419.

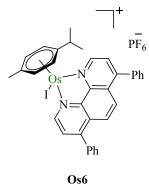

3. Catalyst Screening and Conditions Optimization: Reaction of 4methoxybenzaldehyde with 4-methoxyaniline

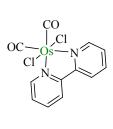

General procedure: A glass vial in a 10 mL stainless steel or titanium autoclave was charged with the prescribed quantity of the catalyst, co-catalyst, 4-methoxyaniline (24.7 - 98.8 mg, 50-200 mol %, 0.1 - 0.4 mmol), 4-methoxybenzaldehyde (48.8 µL, 100 mol%, 0.4 mmol) and 0.4 mL of the corresponding solvent if mentioned. The autoclave was sealed, flushed three times with 10 bar of CO, then charged with the indicated pressure of CO. The reactor was placed into a preheated oil bath. After the indicated time, the reactor was cooled down to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, and then a sample of the resulting solution was analyzed by GC. Unless otherwise mentioned, the yields were determined by GC.

All experiments were reproduced at least two times.

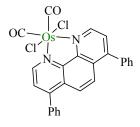
Table S1 Comparison of catalytic activity of different complexes.

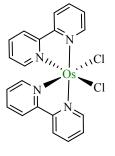


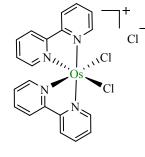

Os1

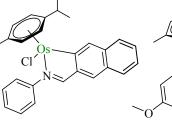


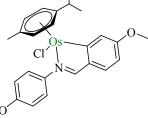
Os3



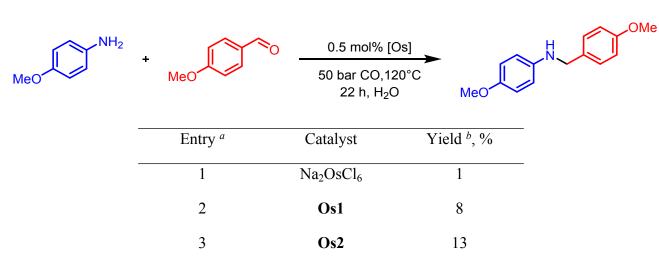



Os7





Os9


Os10

Os11

Os12

4	Os3	94
5	Os4	84
6	Os5	98
7	Os6	80
8	Os7	81
9	Os8	99
10	Os9	Traces
11	Os10	2
12	Os11	10
13	Os12	Traces

^{*a*}Osmium catalyst (0.5 mol% [Os]), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L H₂O, 50 bar CO, 120 °C, 22 h.

^b Yields of the experiments were determined by GC.

.OMe NH_2 X mol% [Os] MeO 50 bar CO,120°C MeC MeO 22 h, H₂O [Os] $Os1 + Bphen^{a}$, **Os4**^b, **Os6** ^b, % Loading, Entry % % mol% Cl Cl I, PF_6 Anions -1 0.5 98 84 80 2 0.25 99 79 2 3 0.125 2 85 53

Table S2. Investigation of the effects of ancillary anions.

^{*a*}98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 0.25-0.0625 mol% of catalyst, 1.5-0.375 mol% of bathophenanthroline **L3** 2-0,5 mg (6.0-1.5 μ mol), 400 μ L of H₂O, 50 bar CO, 120°C, 22 h. Yields of the experiments were determined by GC.

^{*b*}98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 0.5-0.0625 mol% of catalyst, 400 μ L of H₂O, 50 bar CO, 120°C, 22 h.Yields of the experiments were determined by GC

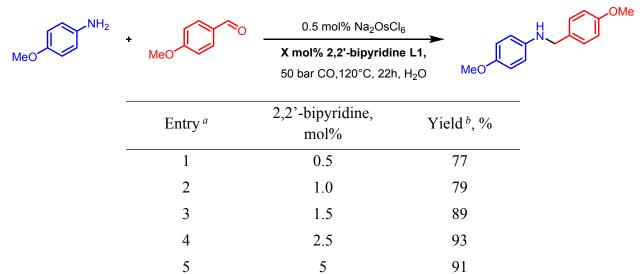

MeO + MeO	x mol ^o	0.5 mol% [Os]	MeO
Entry	Catalyst	2,2'-bipyridine L1, mol%	Yield ^c , %
1ª	Na ₂ OsCl ₆	-	1
2^b	Na ₂ OsCl ₆	1.5	89
3 ^{<i>a</i>}	Os1	-	8
4^b	Os1	1.5	89
5 ^{<i>a</i>}	Os2	-	13
6^b	Os2	1.5	99
7 ^a	Os9	-	Traces
8^b	Os9	1.5	5
9 ^a	Os10	-	2
10^{b}	Os10	1.5	2
11^{a}	Os11	-	10
12^{b}	Os11	1.5	71
13 ^a	Os12	-	Traces
14^b	Os12	1.5	15

Table S3. Investigation of the effects of ancillary ligands.

^{*a*}Osmium catalyst (0.5 mol% [Os]), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L of H₂O, 50 bar CO, 120°C, 22 h.

^{*b*}Osmium catalyst (0.5 mol% [Os]), **2,2'-bipyridine L1 0.96 mg (6.0 \mumol)**, 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L of H₂O, 50 bar CO, 120°C, 22 h.

^c Yields of the experiments were determined by GC.

Table S4. Investigation of the effect of 2,2'-bipyridine amount

^{*a*}Na₂OsCl₆ 0.9 mg (2.0 μ mol), 2,2'-bipyridine L1 0.32-3.2 mg (2.0–20 μ mol), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L H₂O, 50 bar CO, 120°C, 22 h. ^{*b*}Yields of the experiments were determined by GC.

OMe NH₂ 0.5 mol% Na₂OsCl₆ 1.5 mol% ligand. MeO Me 50 bar CO,120°C, 22h, MeO H_2O Yield^b, % Entry a Ligand 1 2,2'-bipyridine L1 89 2 7,8-benzoquinoline L2 4 3 Bathophenanthroline L3 99 4 2,2'-biquinoline L4 5 5 Neocuproine L5 4 2,3-Bis(2-pyridyl)-pyrazine L6 6 11 1,10-phenanthroline L7 99 7

Table S5. Screening of ancillary ligands (Na₂OsCl₆).

^{*a*}Na₂OsCl₆ 0.9 mg (2.0 μ mol), 1.5 mol% of ligand, 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L H₂O, 50 bar CO, 120°C, 22 h. ^{*b*}Yields of the experiments were determined by GC.

NH ₂		0.25 mol% [(Cymene)OsCl ₂] ₂ Os1	OMe
MeO	+ MeO	0.5 mol% ligand,	
		50 bar CO,120°C, 22h, H ₂ O:EtOH=80:20	MeO
	Entry ^a	Ligand	Yield ^b ,%
	1	2,2'-bipyridine L1	96
	2	7,8-benzoquinoline L2	7
	3	Bathophenanthroline L3	74
	4	2,2'-biquinoline L4	3
	5	Neocuproine L5	8
	6	2,3-Bis(2-pyridyl)-pyrazine L6	41
	7	1,10-phenanthroline L7	71

Table S6. Screening of ancillary ligands ([(p-cymene)OsCl₂]₂, Os1).

^{*a*}Osmium catalyst **Os1** 0.8 mg (1.0 μ mol), 0.5 mol% of ligand, 98.8 mg (0.8 mmol), 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 320 μ L H₂O + 80 μ L EtOH, 50 bar CO, 120°C, 22 h. ^{*b*} Yields of the experiments were determined by GC.

Table S7. Investigation of the temperature effect.

NH ₂		0.25 mol% [(Cymene)OsCl ₂] ₂ Os1	.	.H. J.
	MeO	0.5 mol% 2,2'-bipyridine L1 , 50 bar CO, t°C, H ₂ O	MeO	
	Entry ^a	temperature, °C	Yield ^b , %	
	1	60	Traces	
	2	80	Traces	
	3	100	27	
	4	120	81	
	5	140	88	
	6	160	74	
	7	180	41	
	8	200	15	

^{*a*}Osmium catalyst **Os1** 0.8 mg (1.0 μ mol),2,2'-bipyridine **L1** 0.32 mg (2.0 μ mol), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L of H₂O, 50 bar CO, corresponding temperature, 22 h. ^{*b*} Yields of the experiments were determined by GC.

Table S8. Screening of solvents.

NH ₂	0.25 mol% [(Cymene)OsCl ₂] ₂ Os1	
MeO	0.5 mol% 2,2'-bipyridine L1 , 50 bar CO, 140°C,22 h, solvent	MeO
Entry ^a	Solvent	Yield ^c , %
1	THF (20 ppm H_2O)	12
2	Et_2O (20 ppm H_2O)	11
3	MeCN (20 ppm H ₂ O)	10
4	Dioxane (20 ppm H ₂ O)	7
5	EtOAc (0.1% H ₂ O)	25
6	t-BuOMe (0.5% H ₂ O)	10
7	H_2O	88
8	PhCH ₃ (0.03% H ₂ O)	15
9 ^b	MeOH (0.0096% H ₂ O)	65
10 ^b	MeOH (0.014% H ₂ O)	62
11 ^b	EtOH (1.4% H ₂ O)	67
12 ^b	EtOH (4.86% H ₂ O)	62
13 ^b	i-PrOH (0.0092% H ₂ O)	41
14 ^b	i-PrOH (0.1% H ₂ O)	31
15	t-BuOH (0.1% H ₂ O)	16

^aOsmium catalyst Os1 0.8 mg (1.0 μmol), 2,2'-bipyridine L1 0.32 mg (2.0 μmol), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μL (0.4 mmol) 4-methoxybenzaldehyde, 400 μL of corresponding solvent, 50 bar CO, 140°C, 22 h.
^bThe proportion of water was measured by Fischer titration.

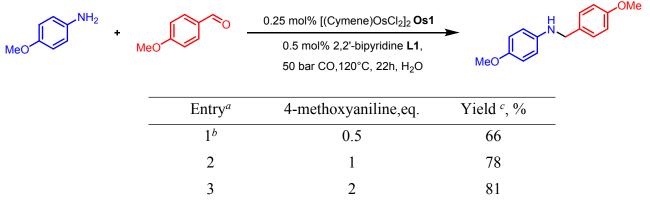
^c Yields of the experiments were determined by GC.

MeO

Table S9. Assessment of ethanol as a cosolvent

NH ₂		0.25 mol% [(Cymene)OsCl ₂] ₂ Os1		OMe
MeO MeO		0.5 mol% 2,2'-bipyridine L1 , 50 bar CO,120°C 22 h, H₂O:EtOH	MeO	
	Entry ^a	H ₂ O:EtOH	Yield ^b , %	
	1	80:20	96	
	2	20:80	94	
	3	50:50	86	
	4	100:0	81	

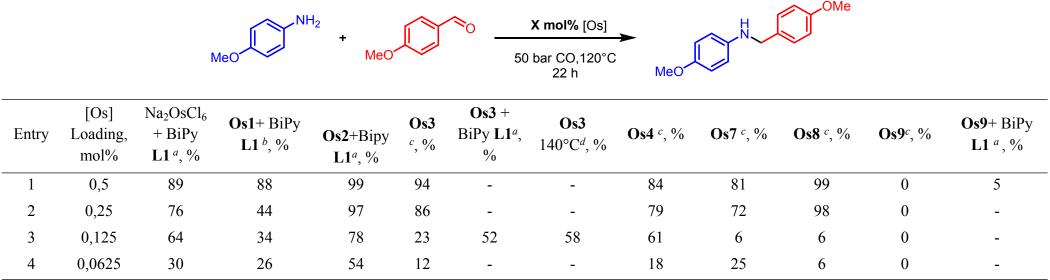
^{*a*}Osmium catalyst **Os1** 0.8 mg (1.0 μmol), 2,2'-bipyridine **L1** 0.32 mg (2.0 μmol), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μL (0.4 mmol) 4-methoxybenzaldehyde, 400 μL of H₂O-EtOH mixtures, 50 bar CO, 140°C, 22 h. ^{*b*} Yields of the experiments were determined by GC.


S16

NH ₂		0.25 mol% [(Cymene)OsCl ₂] ₂	Os1	H OMe
MeO +	MeO	0.5 mol% 2,2'-bipyridine L X bar CO ,120°C, 22h, H ₂		
	Entry ^a	Pressure, bar	Yield ^b , %	-
	1	5	Traces	-
	2	10	13	
	3	30	36	
	4	50	81	

Table S10. Investigation of pressure influence on the Os-catalyzed alkylation.

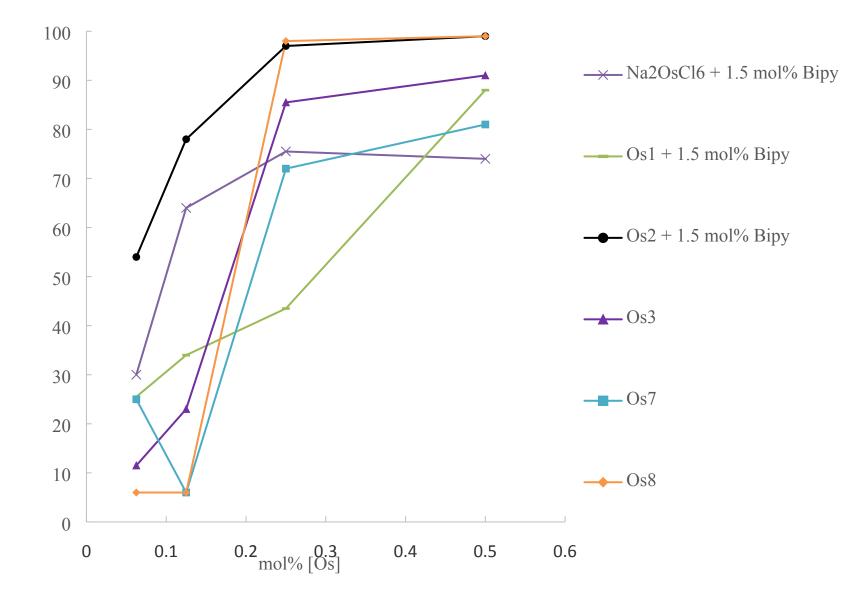
^aOsmium catalyst Os1 0.8 mg (1.0 μmol),2,2'-bipyridine L1 0.32 mg (2.0 μmol), 98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μL (0.4 mmol) 4-methoxybenzaldehyde, 400 μL of H₂O, corresponding preassure, 120°C, 22 h.
^b Yields of the experiments were determined by GC.


Table S11. Effect of the stoichiometric ratio of reagents.

^{*a*}Osmium catalyst **Os1** 0.8 mg (1.0 μ mol), 2,2'-bipyridine **L1** 0.32 mg (2.0 μ mol), 24.7-98.8 mg (0.2-0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 400 μ L of H₂O, 50 bar CO, 120°C, 22 h. ^{*b*}The yield was calculated relative to 4-methoxyaniline.

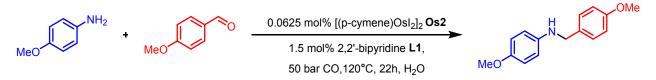
^cYields of the experiments were determined by GC.

Table S12. Investigation of the catalysts' loading


^{*a*}98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8 μ L (0.4 mmol) 4-methoxybenzaldehyde, 0.5-0.0625 mol% of catalyst, 1.5 mol% of 2,2'-bipyridine 0.96 mg (6.0 μ mol), 400 μ L of H₂O, 50 bar CO, 120°C, 22 h . Yields of the experiments were determined by GC.

^b98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8μL (0.4 mmol) 4-methoxybenzaldehyde, **320 μL H₂O 80 μLEtOH**, 0.25-0.03125mol% % of catalyst, **1.5 mol% of 2,2'-bipyridine L1**,. Yields of the experiments were determined by GC.

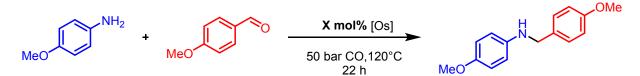
^{c98.8} mg (0.8 mmol) 4-methoxyaniline, 48.8μL (0.4 mmol) 4-methoxybenzaldehyde, 0.5-0.0625 mol% of catalyst, 400 μL of H₂O, 50 bar CO, 120°C, 22 h.Yields of the experiments were determined by GC.


^d98.8 mg (0.8 mmol) 4-methoxyaniline, 48.8µL (0.4 mmol) 4-methoxybenzaldehyde, 400 µL H₂O, 0.5-0.0625 mol% of catalyst, **140°C**, Yields of the experiments were determined by GC.

«-» - Experiment was not conducted.

Yield, %

Finally, optimal conditions are:



Os2 (0.0625 – 0.25 mol%), 1.5 mol% 2,2'-bipyridine L1, 2 equiv. of amine, H₂O, 50 bar CO, 120°C, 22 h.

Os2 was selected as the benchmark catalyst due to its low cost and relative simplicity. Moreover, the reaction requires minimal loading of this catalyst. Thus, this catalyst represents the optimal combination of catalytic activity and cost.

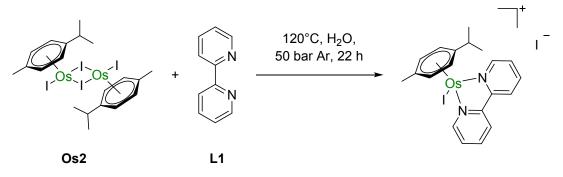
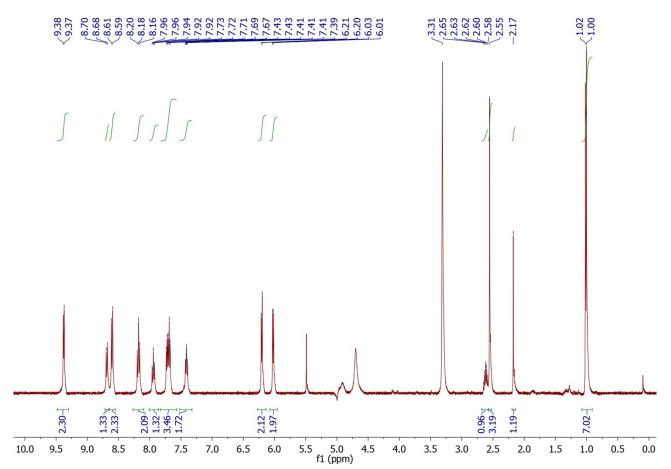
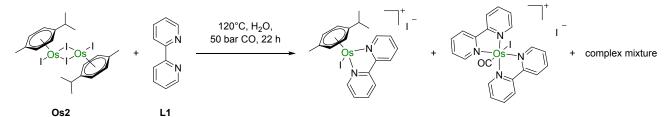
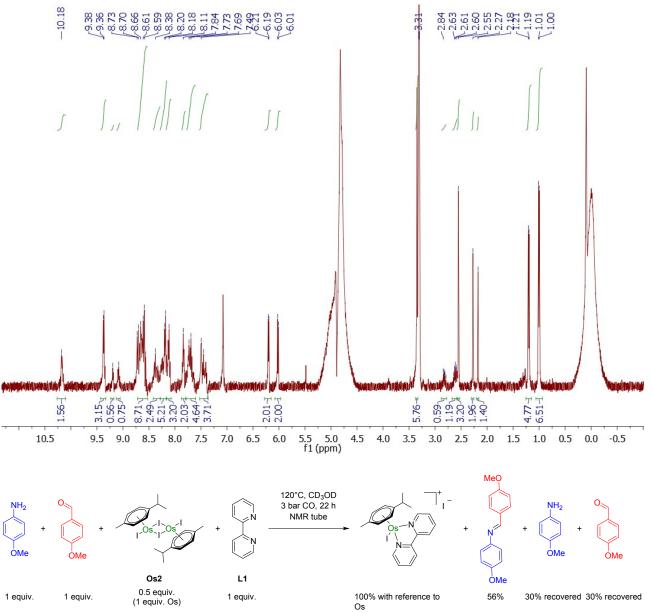

Other active catalytic systems are listed in the table below along with their price and optimal conditions for catalysis. The prices were calculated on the basis of Sigma Aldrich catalogue.

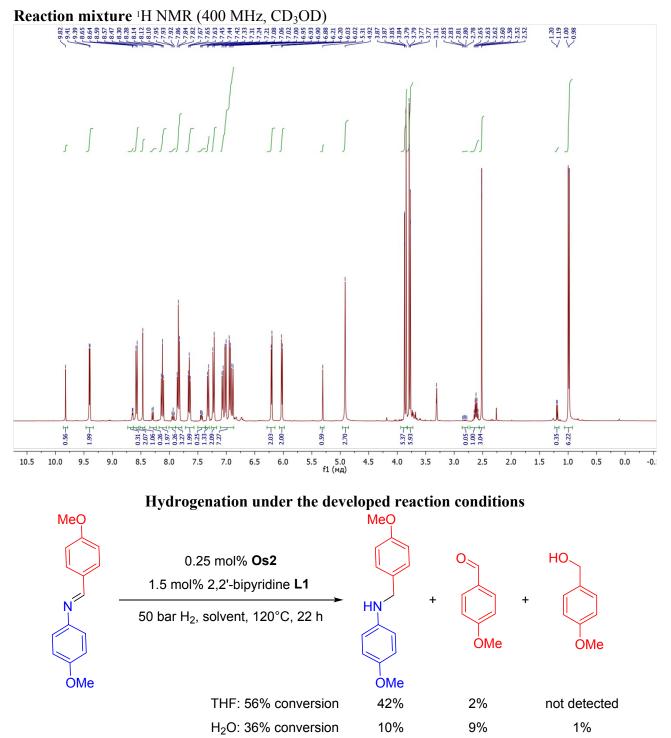
Table S13. Comparison of the working catalytic systems.


Entry	Osmium source	Additive	Minimal [Os] loading required for preparative yield	Number of steps for the osmium precursor preparation	Additive/Ligand cost, EUR for 1 g	Yield at the standard conditions using the mentioned catalytic osmium loading, %
1	Na ₂ OsCl ₆	Bipy L1 1.5 mol%	0.125 mol%	0	11 EUR/g	64
2	Na ₂ OsCl ₆	BPhen L3 1.5 mol%	0.5 mol%	0	549 EUR/g	99
3	Os1	Bipy L1 1.5 mol%	0.5 mol% (H ₂ O:EtOH 4:1)	1	11 EUR/g	88
4	Os1	BPhen L3 1.5 mol%	0.125 mol% with 0.3725 mol% Bphen	1	549 EUR/g	85
5	Os2	Bipy L1 1.5 mol%	0.0625 mol%	2	11 EUR/g	54
6	Os7	-	0.25 mol%	1	11 EUR/g	72
7	Os8	-	0.25 mol%	1	549 EUR/g	98
8	Os3	1.5 mol% Bipy L1	0.125 mol%	2	11 EUR/g	52
9	Os3	-	0.125 mol%, 140°C	2	11 EUR/g	58
10	Os4	-	0.125	2	549 EUR/g	61
11	Os6	-	0.5	2	549 EUR/g	80


4. Mechanistic investigations

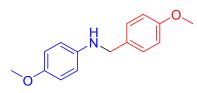
A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (5.2 mg, 4.5 μ mol, 50 mol%), 2,2'-bipyridine (1.4 mg, 9.0 μ mol, 100 mol%) and water (100 μ L). The autoclave was sealed, flushed three times with 10 bar of Ar, and then charged with Ar (50 bar). The reactor was placed into a preheated to 120°C oil bath for 18 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was analyzed by NMR and LCMS. The main component is CymeneOsBiPyI₂.


Reaction mixture ¹H NMR (400 MHz, CD₃OD, signal of water was supressed)


A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (5.2 mg, 4.5 μ mol, 50 mol%), 2,2'-bipyridine (1.4 mg, 9.0 μ mol, 100 mol%) and water (100 μ L). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 18 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was analyzed by NMR and LCMS. The main component is CymeneOsBiPyI₂, and (BiPy)₂OsCOI₂ was identified by MS.

Reaction mixture ¹H NMR (400 MHz, CD₃OD, signal of water was supressed)

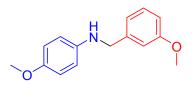
A high pressure NMR tube was charged with catalyst **Os2** (10 mg, 8.7 μ mol, 50 mol%), 2,2'-bipyridine (2.7 mg, 17 μ mol, 100 mol%), 4-methoxyaniline (2.1 mg, 100 mol %, 17 μ mol), 4-methoxybenzaldehyde (2.1 μ L, 100 mol%, 17 μ mol) and CD₃OD (400 μ L). The tube was sealed,


flushed three times with 3 bar of CO, and then charged with CO (3 bar). The tube was placed into a preheated to 120°C oil bath for 16 h. After the indicated time, the tube was cooled to room temperature and the reaction mixture was analyzed by NMR.

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), N,1-bis(4-methoxyphenyl)methanimine (96.8 mg, 100 mol %, 0.4 mmol), water or THF (400 μ L). The autoclave was sealed, flushed three times with 10 bar of H₂, and then charged with H₂ (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR.

5. Synthesis and characterization of the RA products

4-methoxy-N-(4-methoxybenzyl)aniline (1)

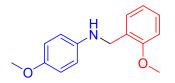

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol), water (400 μ L) and 4-methoxybenzaldehyde (48.8 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 93% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography using InterChim PuriFlash chromatograph in hexane-ethyl acetate gradient system (Rf=0.5 hexane/ethyl acetate/trimethylamine = 4/1/0.05). Isolated as a white solid - 93% (90.9 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 8.7 Hz, 2H, ArH), 6.88 (d, *J* = 8.7 Hz, 2H, ArH), 6.79 (d, *J* = 8.9 Hz, 2H, ArH), 6.61 (d, *J* = 8.9 Hz, 2H, ArH), 4.21 (s, 2H, NCH₂), 3.81 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 158.9 (C_{Ar}-O), 152.2 (C_{Ar}-O), 142.6 (C_{Ar}-N), 131.8 (<u>C_{Ar}</u>-CH₂), 128.9 (C_{Ar}), 115.0 (C_{Ar}), 114.2 (C_{Ar}), 114.06 (C_{Ar}), 55.9 (OCH₃), 55.4 (OCH₃), 48.8 (NCH₂).

The obtained NMR data are in agreement with the literature report.⁴

4-methoxy-N-(3-methoxybenzyl)aniline (2)

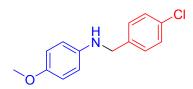

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 µmol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 µmol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol), water (400 µL) and 3-methoxybenzaldehyde (49 µL, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 86% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine 10/1/0.1 (Rf = 0.11). Isolated as a yellow oil - 71% (69.6 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.21 (m, 1H, ArH), 7.05 – 6.90 (m, 2H, ArH), 6.89 – 6.71 (m, 3H, ArH), 6.62 (d, *J* = 8.9 Hz, 2H, ArH), 4.27 (s, 2H, NCH₂), 3.81 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃).

¹³C NMR (75 MHz, CDCl₃) δ 160.0 (C_{Ar}-O), 152.3 (C_{Ar}-O), 142.5 (C_{Ar}-N), 141.5 (<u>C_{Ar}</u>-C), 129.7 (C_{Ar}), 119.9 (C_{Ar}), 115.0 (C_{Ar}), 114.2 (C_{Ar}), 113.1 (C_{Ar}), 112.7 (C_{Ar}), 55.9 (OCH₃), 55.3 (OCH₃), 49.3 (NCH₂).

The obtained NMR data are in agreement with the literature report.⁴

4-methoxy-N-(2-methoxybenzyl)aniline (3)


A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol) water (400 μ L) and 2-methoxybenzaldehyde (48.6 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 140°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 86% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine 10/1/0.1 (Rf = 0.11). Isolated as a yellow oil - 80% (77.7 mg).

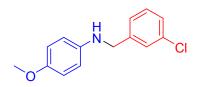
¹H NMR (300 MHz, CDCl₃) δ 7.32 (d, *J* = 7.4 Hz, 1H, ArH), 7.26 (t, J = 7.7 Hz, 1H, ArH), 6.98 – 6.95 (m, 2H, ArH), 6.79 (d, *J* = 8.9 Hz, 2H, ArH), 6.64 (d, *J* = 8.9 Hz, 2H, ArH), 4.30 (s, 2H, NCH₂), 3.87 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 157.5 (C_{Ar}-O), 152.2 (C_{Ar}-O), 142.8 (C_{Ar}-N), 129.1 (C_{Ar}), 128.4 (C_{Ar}), 127.7 (<u>C_{Ar}</u>-CH₂), 120.6 (C_{Ar}), 114.9 (C_{Ar}), 114.54 (C_{Ar}), 110.3 (C_{Ar}), 55.9 (OCH₃), 55.4 (OCH₃), 44.6 (NCH₂).

The obtained NMR data are in an agreement with literature data.⁴

N-(4-chlorobenzyl)-4-methoxyaniline (4)

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol) 4-chlorobenzaldehyde (56.4 mg, 100 mol%, 0.4 mmol) and water (400 μ L). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 160°C oil bath for 22 h. After the indicated time, the reactor was cooled

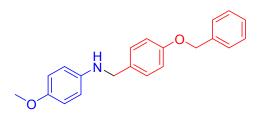

to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 80% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent: hexane/ethyl acetate/triethylamine 20/1/0.1 (Rf = 0.11) to hexane/ethyl acetate/triethylamine 10/1/0.1 (Rf = 0.2). Isolated as a yellow oil. Isolated as a yellow oil - 70% (69 mg).

¹H NMR (300 MHz, CDCl₃) δ 7.31 (s, 4H, Cl-Ar**H**), 6.79 (d, *J* = 8.9 Hz, 2H, ArH), 6.59 (d, *J* = 8.9 Hz, 2H, ArH), 4.27 (s, 2H, NCH₂), 3.75 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 152.4 (C_{Ar}-O), 142.1 (C_{Ar}-N), 138.4 (<u>C_{Ar}</u>-C), 132.8 (C_{Ar}-Cl), 128.83 (C_{Ar}), 128.78 (C_{Ar}), 115.0 (C_{Ar}), 114.2 (C_{Ar}), 55.9 (OCH₃), 48.6 (NCH₂).

The obtained NMR data are in agreement with the literature report.⁵

N-(3-chlorobenzyl)-4-methoxyaniline (5)

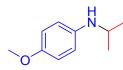

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol), water (400 μ L) and 3-chlorobenzaldehyde (45.2 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 160°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 78% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine 10/1/0.1 (Rf = 0.2). Isolated as a yellow oil - 73% (72.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H, Cl-Ar**H**), 7.26 (s, 3H, Cl-Ar**H**), 6.79 (d, *J* = 7.0 Hz, 2H, ArH), 6.59 (d, *J* = 7.0 Hz, 2H, ArH), 4.28 (s, 2H, NCH₂), 3.75 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 152.4 (C_{Ar}-O), 142.1 (C_{Ar}-N), 134.6 (<u>C_{Ar}</u>-C), 130.0 (C_{Ar}), 127.6 (C_{Ar}), 127.4 (C_{Ar}), 125.6 (C_{Ar}), 115.0 (C_{Ar}), 114.2 (C_{Ar}), 55.9 (OCH₃), 48.7 (NCH₂).

The obtained NMR data are in agreement with the literature report.⁶

N-(4-(benzyloxy)benzyl)-4-methoxyaniline (6)

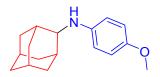

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol), 4-(benzyloxy)benzaldehyde (84.9 mg, 100 mol%, 0.4 mmol) and water (400 μ L). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 160°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 68% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography using InterChim PuriFlash chromatograph in hexane-DCM gradient system (Rf=0.16 DCM). Isolated as a yellowish solid - 56% (71.2 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.21 (m, 7H, ArH), 6.97 (d, *J* = 8.5 Hz, 2H, ArH), 6.80 (d, *J* = 8.9 Hz, 2H, ArH), 6.62 (d, *J* = 8.9 Hz, 2H , ArH), 5.07 (s, 2H, OCH₂), 4.22 (s, 2H, NCH₂), 3.76 (s, 3H, OCH₃).

¹³C NMR (101 MHz, CDCl₃) δ 158.1 (C_{Ar}-O), 152.3 (C_{Ar}-O), 142.6 (C_{Ar}-N), 137.1 (<u>C_{Ar}</u>-C), 132.1 (<u>C_{Ar}</u>-C), 129.0 (C_{Ar}), 128.7 (C_{Ar}), 128.1 (C_{Ar}), 127.6 (C_{Ar}), 115.0 (C_{Ar}), 115.0 (C_{Ar}), 114.2 (C_{Ar}), 70.1 (OCH₂), 55.9 (OCH₃), 48.8 (NCH₂).

The obtained NMR data are in agreement with the literature report.⁴

N-isopropyl-4-methoxyaniline (7)

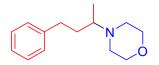

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (2.32 mg, 2.0 μ mol, 0.25 mol%), 2,2'-bipyridine (1.92 mg, 12.0 μ mol, 1.5 mol%), 4-methoxyaniline (98.8 mg, 100 mol%, 0.8 mmol) water (800 μ L), and acetone (1164 μ L, 2000 mol%, 16 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 160°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 87% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine 10/1/0.1 (Rf = 0.22). Isolated as a yellow oil - 67% (88 mg).

¹H NMR (400 MHz, CDCl₃) δ 6.79 (d, J = 8.9 Hz, 2H, ArH), 6.58 (d, J = 8.9 Hz, 2H, ArH), 3.75 (s, 3H, OCH₃), 3.55 (sept, J = 6.3 Hz, 1H, <u>CH</u>(CH₃)₂), 1.20 (d, J = 6.3 Hz, 6H, C(<u>CH₃)₂</u>).

¹³C NMR (101 MHz, CDCl₃) δ 152.0 (C_{Ar}-O), 141.9 (C_{Ar}-N), 115.0 (2C, C_{Ar}), 55.9 (OCH₃), 45.3 (NCH), 23.2 (CH₃).

The obtained NMR data are in agreement with the literature report⁷

N-(4-methoxyphenyl)adamantan-2-amine (8)

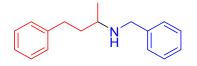

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), 4-methoxyaniline (98.8 mg, 200 mol %, 0.8 mmol) and 2-adamantanoe (60.5 mg, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 180°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 82% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography using InterChim PuriFlash chromatograph in DCM-MeOH gradient system (Rf=0.3 DCM). Isolated as a brown solid - 70% (72.5 mg).

¹H NMR (300 MHz, CDCl₃) δ 6.78 (d, *J* = 8.9 Hz, 2H, ArH), 6.59 (d, *J* = 8.9 Hz, 2H, ArH), 3.75 (s, 3H, OCH₃), 3.48 (s, 1H, NCH), 2.10 – 1.69 (m, 12H, Adamantyl), 1.59 (m appears as d, *J* = 12.9 Hz, 2H, Adamantyl).

¹³C NMR (101 MHz, CDCl₃) δ 151.8 (C_{Ar}-O), 141.7 (C_{Ar}-N), 115.1 (C_{Ar}), 114.7 (C_{Ar}), 57.9 (NCH), 56.0 (OCH₃), 37.9 (Adamantyl), 37.6 (Adamantyl), 31.7 (Adamantyl), 31.6 (Adamantyl), 27.6 (Adamantyl), 27.5 (Adamantyl).

The obtained NMR data are in agreement with the literature report.⁴

4-(4-phenylbutan-2-yl)-morpholine (9)


A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 µmol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 µmol, 1.5 mol%), water (400 µL), morpholine (70 µL, 200 mol %, 0.8 mmol) and 4-phenylbutan-2-one (60.1 µL, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 83% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine = 4/1/0.1, Rf = 0.19) to afford 62 mg (71 %) of the product as a yellowish oil.

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.07 (m, 5H, ArH), 3.79 – 3.53 (m, 4H, CH₂O), 2.81 – 2.24 (m, 7H, Ph<u>CH₂</u>, CH₃<u>CH</u>N, CH₂N), 1.90 – 1.78 (m, 1H, CC<u>H</u>HC), 1.65 – 1.42 (m, 1H, CCH<u>H</u>C), 1.02 (d, *J* = 6.6 Hz, 3H, CH<u>CH₃</u>).

¹³C NMR (101 MHz, CDCl₃) δ 142.6 (C_{Ar}-C), 128.5 (C_{Ar}), 128.4 (C_{Ar}), 125.8 (C_{Ar}), 67.4 (CH₂O), 58.5 (CHN), 48.7 (CH₂N), 35.2 (C<u>CH₂</u>C), 32.9 (Ph<u>CH₂</u>), 13.9 (CH₃).

The obtained NMR data are in agreement with the literature report.¹⁰

N-benzyl-4-phenylbutan-2-amine (10)

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), phenylmethanamine (87.6 μ L, 200 mol%, 0.8 mmol) and 4-phenylbutan-2-one (60.1 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 140°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 84% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine = 4/1/0.1, Rf = 0.17) to afford 79.7 mg (83 %) of the product as a yellowish oil.

¹H NMR (400 MHz, CDC₃) δ 7.47 – 7.00 (m, 10H, ArH), 3.79 (m, 2H, NCH₂), 2.80 – 2.58 (m, 3H, Ph<u>CH₂</u>C, N<u>CH</u>CH₃), 2.51 (s, 1H, NH), 1.88 – 1.77 (m, 1H, CCH<u>H</u>C), 1.74 – 1.60 (m, 1H, CC<u>H</u>HC), 1.16 (d, *J* = 6.3 Hz, 3H, CH<u>CH₃</u>).

¹³C NMR (101 MHz, CDCl₃) δ 142.6 (C_{Ar}-C), 140.9 (C_{Ar}-C), 128.5 (C_{Ar}), 128.46 (C_{Ar}), 128.45 (C_{Ar}), 128.3 (C_{Ar}), 127.0 (C_{Ar}), 125.8 (C_{Ar}), 52.1 (C-N), 51.4 (C-N), 38.8 (C<u>CH</u>₂C), 32.4 (Ph<u>CH</u>₂C), 20.5 (CH<u>CH</u>₃).

The obtained NMR data are in agreement with the literature report.⁸

N-benzylcyclopentanamine (11)

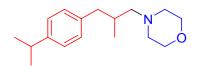
A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), cyclopentanone (35.4 μ L, 100 mol%, 0.4 mmol) and phenylmethanamine (87.6 μ L, 200 mol %, 0.8 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 140°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 72% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine = 20/1/1, Rf = 0.33) to afford 49.5 mg (65%) of the product as a yellowish oil.

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 4H, ArH), 7.30 – 7.23 (m, 1H, ArH), 3.79 (s, 2H, Ph<u>CH₂</u>N), 3.14 (quint., *J* = 6.7 Hz, 1H, NCH), 1.93 – 1.81 (m, 2H, Cyclopentyl), 1.78 – 1.65 (m, 2H, Cyclopentyl), 1.62 – 1.48 (m, 2H, Cyclopentyl), 1.46 – 1.34 (m, 3H, NH, Cyclopentyl).

¹³C NMR (101 MHz, CDCl₃) δ 140.8 (C_{Ar}-C), 128.5 (C_{Ar}), 128.3 (C_{Ar}), 126.9 (C_{Ar}), 59.2 (NCH), 52.9 (Ph<u>CH₂</u>N), 33.3 (Cyclopentyl), 24.2 (Cyclopentyl).

The obtained NMR data are in agreement with the literature report.9

4-(2-phenylpropyl)morpholine (12)


A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), morpholine (70 μ L, 200 mol%, 0.8 mmol) and 2-phenylpropanal (48.9 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 71% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine = 10/1/0.1, Rf = 0.13) to afford 50.9 mg (63 %) of the product as a yellowish oil.

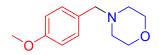
¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.16 (m, 5H, ArH), 3.74 – 3.63 (m, 4H, O<u>CH</u>₂CH₂N), 3.03 – 2.87 (m, 1H, <u>CH</u>CH₃), 2.59 – 2.44 (m, 4H, OCH₂<u>CH</u>₂N), 2.44 – 2.32 (m, 2H, N<u>CH</u>₂CH), 1.29 (d, *J* = 6.6 Hz, 3H, CH<u>CH</u>₃).

¹³C NMR (101 MHz, CDCl₃) δ 146.1 (C_{Ar}-C), 128.4 (C_{Ar}), 127.3 (C_{Ar}), 126.2 (C_{Ar}), 67.2 (O<u>CH</u>₂CH₂N), 66.7 (N<u>CH</u>₂CH), 54.1 (OCH₂<u>CH</u>₂N), 37.2 (<u>CH</u>CH₃), 20.0 (CH<u>CH</u>₃).

The obtained NMR data are in agreement with the literature report.¹⁰

4-(3-(4-isopropylphenyl)-2-methylpropyl)morpholine (13)

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), morpholine (70 μ L, 200 mol%, 0.8 mmol) and 3-(4-isopropylphenyl)-2-methylpropanal (80.1 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 71% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under

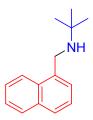

reduced pressure and the residue was purified by column chromatography (eluent: hexane/ethyl acetate/triethylamine = 4/1/0.1, Rf = 0.27), dissolved in diluted HCl and washed with diethyl ether (2 x 3 ml). The water solution was basified with KOH, the product extracted with diethyl ether (3 x 3 ml) and dried with Na₂SO₄. After removal of the solvent *in vacuo* 69 mg (66 %) of the product was obtained as a yellowish oil.

¹H NMR (400 MHz, CDCl₃) δ 7.14 (d, J = 7.7 Hz, 2H, ArH), 7.08 (d, J = 7.7 Hz, 2H, ArH), 3.73 (t, J = 4.3 Hz, 4H, O<u>CH₂</u>CH₂N), 2.95 – 2.83 (m, 1H, <u>CH</u>(CH₃)₂), 2.82 - 2.74 (m, 1H, CH<u>CH₂</u>), 2.43 (br. s, 4H, OCH₂<u>CH₂</u>N), 2.35 – 2.19 (m, 2H, CH<u>CH₂</u>), 2.18 – 2.10 (m, 1H, CH<u>CH₂</u>), 2.05 – 1.88 (m, 1H, <u>CH</u>CH₃), 1.25 (d, J = 6.9 Hz, 6H, CH(<u>CH₃)₂</u>), 0.87 (d, J = 6.5 Hz, 3H, CH<u>CH₃</u>).

¹³C NMR (101 MHz, CDCl₃) δ 146.3 (<u>C_{Ar}</u>-CH(CH₃)₂), 138.3 (<u>C_{Ar}</u>-CH₂), 129.3 (C_{Ar}), 126.2 (C_{Ar}), 67.2 (O<u>CH₂</u>CH₂N), 65.5 (N<u>CH₂</u>CH), 54.1 (OCH₂<u>CH₂</u>N), 40.9 (Ph<u>CH₂</u>), 33.8 (CH), 32.1 (CH), 24.2 (CH(<u>CH₃)</u>₂), 18.2 (CH<u>CH₃</u>).

HRMS (TOF ESI+): for C₁₇H₂₈NO⁺ [M+H]⁺ calculated m/z 262.2165, found m/z 262.2165.

4-(4-methoxybenzyl)morpholine (14)


A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (0.29 mg, 0.25 μ mol, 0.0625 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), morpholine (70 μ L, 200 mol%, 0.8 mmol) and 4-methoxybenzaldehyde (48.8 μ L, 100 mol%, 0.4 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 120°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 80% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified using column chromatography, eluent hexane/ethyl acetate/triethylamine 4/1/0.05 (Rf = 0.13). Isolated as a yellow oil - 75% (65.5 mg).

¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 8.6 Hz, 2H, ArH), 6.85 (d, *J* = 8.6 Hz, 2H, ArH), 3.79 (s, 3H, OCH₃), 3.70 (t, *J* = 4.7 Hz, 4H, O<u>CH₂</u>CH₂N), 3.43 (s, 2H, Ph<u>CH₂</u>N), 2.45 – 2.39 (m, 4H, OCH₂<u>CH₂</u>N).

¹³C NMR (101 MHz, CDCl₃) δ 158.9 (C_{Ar}-O), 130.5 (C_{Ar}-C), 129.8 (C_{Ar}), 113.7 (C_{Ar}), 67.1 (O<u>CH</u>₂CH₂N), 63.0 (Ph<u>CH</u>₂N), 55.3 (OCH₃), 53.6 (OCH₂<u>CH</u>₂N).

The obtained NMR data are in agreement with the literature report.¹¹

2-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine (15)

A glass vial in a 10 mL titanium autoclave was charged with catalyst **Os2** (1.16 mg, 1.0 μ mol, 0.25 mol%), 2,2'-bipyridine (0.96 mg, 6.0 μ mol, 1.5 mol%), water (400 μ L), 1-naphthaldehyde (54 μ L, 100 mol%, 0.4 mmol) and tert-butylamine (421.6 μ L, 500 mol%, 2 mmol). The autoclave was sealed, flushed three times with 10 bar of CO, and then charged with CO (50 bar). The reactor was placed into a preheated to 160°C oil bath for 22 h. After the indicated time, the reactor was cooled to room temperature and depressurized. The reaction mixture was transferred into a measuring flask and diluted with dichloromethane to 5 mL, 1 ml aliquot was analyzed by NMR. 63% NMR yield. Purification: DCM fraction was washed with water, after that solvent was removed under reduced pressure and the residue was purified by column chromatography (eluent/hexane/ethyl acetate/triethylamine = 20/1/1, Rf = 0.41) to afford 43.8 mg (51 %) of the product as a yellowish oil.

¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 8.4 Hz, 1H, ArH), 7.87 (d, *J* = 8.1 Hz, 1H, ArH), 7.78 (d, *J* = 8.2 Hz, 1H, ArH), 7.62 – 7.37 (m, 4H, ArH), 4.20 (s, 2H, CH₂N), 1.30 (s, 9H, C(CH₃)₃).

¹³C NMR (101 MHz, CDCl₃) δ 137.0 (C_{Ar}-CH₂), 134.0 (C_{Ar}-C), 132.0 (C_{Ar}-C), 128.8 (C_{Ar}), 127.7 (C_{Ar}), 126.4 (C_{Ar}), 126.1 (C_{Ar}), 125.7 (C_{Ar}), 125.6 (C_{Ar}), 123.9 (C_{Ar}), 51.0 (<u>C</u>(CH₃)₃), 44.9 (CH₂N), 29.3 (C(<u>CH₃</u>)₃).

The obtained NMR data are in agreement with the literature report.¹²

6. Details of DFT calculations

Geometry optimizations and frequency calculations for the decarboxylation stage of the WGSR catalyzed by osmium complexes were carried out using Gaussian 09 software (revision D.01)¹³ applying the M06-L functional¹⁴ with SDD basis set. Water solvation was included using SMD model.¹⁵ The optimized geometries were verified to have no negative frequencies for all intermediates and only one negative frequency for the transition states.

Cartesian coordinates optimized at the M06-L/SDD level

[Os(CO)₃Cl₂(COOH)]⁻ (the COOH group is opposite to the CO ligand)

76 17 17	-0.039379000 -1.961343000 -0.230623000	0.483018000 1.528528000 -1.607191000	0.509308000 1.853353000 1.938434000
6	0.138747000	2.121886000	-0.412878000
6	1.384612000	-0.328525000	-0.416960000
8	0.248253000	3.157063000	-0.970186000
8	2.277853000	-0.853790000	-0.980577000
6	1.348368000	1.141693000	1.998951000
8	2.582833000	0.905886000	2.016470000
6	-1.438457000	-0.249070000	-0.698049000
8	-2.294741000	-0.670181000	-1.378457000
8	0.870267000	1.869436000	3.098687000
1	-0.109252000	2.004692000	3.027172000

TS for decarboxylation of [Os(CO)₃Cl₂(COOH)]⁻ (the COOH group is opposite to the CO ligand)

76 17 17 6	-0.153717000 -2.097293000 -0.357340000 -0.009043000	0.468903000 1.445752000 -1.655231000 2.131270000	0.512197000 1.853487000 1.858846000 -0.386945000
6	1.363605000	-0.256690000	-0.361020000
8	0.068853000	3.172354000	-0.932286000
8	2.309766000	-0.717526000	-0.883603000
6	1.428155000	1.146112000	2.118479000
8	2.461396000	0.441430000	2.190531000
6	-1.399091000	-0.290494000	-0.786483000
8	-2.167942000	-0.738916000	-1.547307000
8	1.152050000	2.250196000	2.850317000
1	0.121531000	1.553019000	2.146242000

[Os(CO)₃Cl₂(COOH)]⁻ (the COOH group is opposite to Cl⁻)

76 17 17 6	-0.059202000 -1.966647000 -0.337246000 0.126090000	0.502054000 1.560066000 -1.645307000 2.071888000	0.545961000 1.967406000 1.932046000 -0.448696000
6	1.480763000	-0.394373000	-0.551938000
8	0.234292000	3.074236000	-1.071118000
8	1.996423000	0.044332000	-1.607465000
6	1.257481000	1.079777000	1.895659000
8	2.035092000	1.396380000	2.711199000
6	-1.416797000	-0.203391000	-0.687981000
8	2.029197000	-1.591387000	-0.068146000
1	1.530910000	-1.906869000	0.729315000
8	-2.249517000	-0.637496000	-1.387397000

TS for decarboxylation of $[Os(CO)_3Cl_2(COOH)]^-$ (the COOH group is opposite to Cl⁻)

76	0.015794000	0.431533000	0.642004000
17	-2.008767000	1.609772000	1.775251000
17	-0.578471000	-1.688431000	1.914368000
6	0.439670000	2.005238000	-0.319322000
8	1.356583000	-0.513658000	-0.881732000
8	0.699204000	2.987180000	-0.916845000
6	1.204633000	-0.298324000	-2.104912000
8	1.129450000	1.062656000	2.124872000
6	1.735257000	1.436677000	3.052848000
8	-1.359261000	-0.282160000	-0.639704000
Ũ			
8	2.265112000	-1.278307000	-0.288900000
1	1.456027000	-0.565249000	0.782505000
8	-2.196147000	-0.713044000	-1.323907000

[Os(bipy)(CO)Cl₂(COOH)]⁻

76	1.286658000	5.599103000	13.014583000
17	2.631154000	6.185324000	15.065689000
17	0.043374000	5.229799000	10.831790000
8	3.811447000	3.990614000	12.660532000
8	-0.562230000	3.718585000	14.537181000
7	2.416905000	7.129628000	11.948940000
7	0.201301000	7.436694000	13.378228000
6	1.958013000	8.419924000	12.064845000
6	3.508294000	6.878289000	11.180471000
1	3.822375000	5.845229000	11.113258000
6	4.196262000	7.893257000	10.513476000
1	5.059098000	7.647104000	9.911732000
6	3.746358000	9.214563000	10.640844000
6	2.616914000	9.477033000	11.420138000
6	0.149001000	9.842027000	13.112614000
6	-1.014749000	9.915569000	13.882716000
6	-1.564441000	8.732291000	14.396789000
1	-2.463613000	8.743040000	14.996064000
6	-0.933306000	7.518137000	14.126427000
1	-1.329061000	6.585587000	14.504989000
6	0.745043000	8.595177000	12.871358000
6	2.552405000	4.072208000	12.529238000
6	0.187524000	4.451746000	13.931413000
1	2.250145000	10.488706000	11.519165000
1	4.259979000	10.022782000	10.137858000
1	0.588095000	10.743228000	12.707258000
1	-1.480585000	10.872513000	14.075105000
8	2.001820000	2.898330000	11.910165000
1	1.050282000	3.061176000	11.712958000

TS for decarboxylation of $[Os(bipy)(CO)Cl_2(COOH)]^-$

76 17 17	1.230096000 2.491333000 -0.322130000	5.544666000 6.157784000 5.599919000	12.980380000 15.053170000 10.943510000
8	3.928798000	4.014807000	13.155565000
8	-0.502927000	3.587535000	14.545831000
7	2.376846000	7.061737000	11.922031000
7	0.161942000	7.423061000	13.377487000
6	1.936144000	8.358907000	12.042429000
6	3.465674000	6.797532000	11.153831000
1	3.765916000	5.761996000	11.074344000
6	4.167320000	7.803627000	10.489027000
1	5.027515000	7.546065000	9.888286000

6	3.735229000	9.129425000	10.618599000
6	2.608907000	9.406366000	11.398291000
6	0.167990000	9.818046000	13.110240000
6	-0.986325000	9.914228000	13.893326000
6	-1.560713000	8.747225000	14.413864000
1	-2.452545000	8.779557000	15.022948000
6	-0.958053000	7.518867000	14.135920000
1	-1.363911000	6.592846000	14.519867000
6	0.730791000	8.558548000	12.859447000
6	2.764384000	4.085506000	12.655133000
6	0.186900000	4.349916000	13.923566000
1	2.257387000	10.423356000	11.497881000
1	4.260731000	9.931744000	10.118805000
1	0.622508000	10.711968000	12.707032000
1	-1.425977000	10.881633000	14.094032000
8	2.365337000	3.201428000	11.682641000
1	1.293192000	4.231265000	11.837567000

$[Os(bipy)(CO)Cl_2(COOH...OH_2)]^-$

76 17	1.529749000 2.758381000	5.654959000 6.218530000	12.852308000 14.981326000
17	0.424258000	5.457471000	10.565649000
8	4.170258000	4.330343000	12.390433000
8	-0.280679000	3.696604000	14.313919000
7	2.614992000	7.322007000	11.938665000
7	0.314477000	7.405751000	13.261149000
6	2.053040000	8.568967000	12.081248000
6	3.769301000	7.191397000	11.235968000
1	4.166066000	6.188109000	11.156268000
6	4.417979000	8.285549000	10.660370000
1	5.336396000	8.132971000	10.111691000
6	3.857769000	9.561215000	10.809341000
6	2.664600000	9.701063000	11.522866000
6	0.093156000	9.808438000	13.092776000
6	-1.104884000	9.761411000	13.810633000
6	-1.584808000	8.519740000	14.251652000
1	-2.506659000	8.437572000	14.809746000
6	-0.851733000	7.369320000	13.961582000
1	-1.190772000	6.393626000	14.282991000
6	0.790887000	8.620275000	12.827636000
6	2.899150000	4.209094000	12.371941000
6	0.453725000	4.441462000	13.698628000
1	2.213467000	10.676429000	11.639633000
1	4.336129000	10.428757000	10.375130000
1	0.480952000	10.756736000	12.747137000
1	-1.649513000	10.671492000	14.022007000
8	2.499848000	2.918603000	11.952487000
1	1.503227000	2.807594000	11.861834000
8	-0.108966000	2.487594000	11.432287000
1	-0.699339000	2.306523000	12.187812000
1	-0.328506000	3.376276000	11.065088000

TS for decarboxylation of $[Os(bipy)(CO)Cl_2(COOH...OH_2)]^-$

76	1.375686000	5.645407000	12.863627000
17	2.392848000	6.214699000	15.116608000
17	0.154519000	5.678658000	10.624772000
8	4.198645000	4.698062000	12.722669000
8	-0.569773000	3.673134000	14.107010000
7	2.501763000	7.270903000	11.906166000
7	0.229945000	7.470971000	13.280845000
6	2.006094000	8.541280000	12.068872000

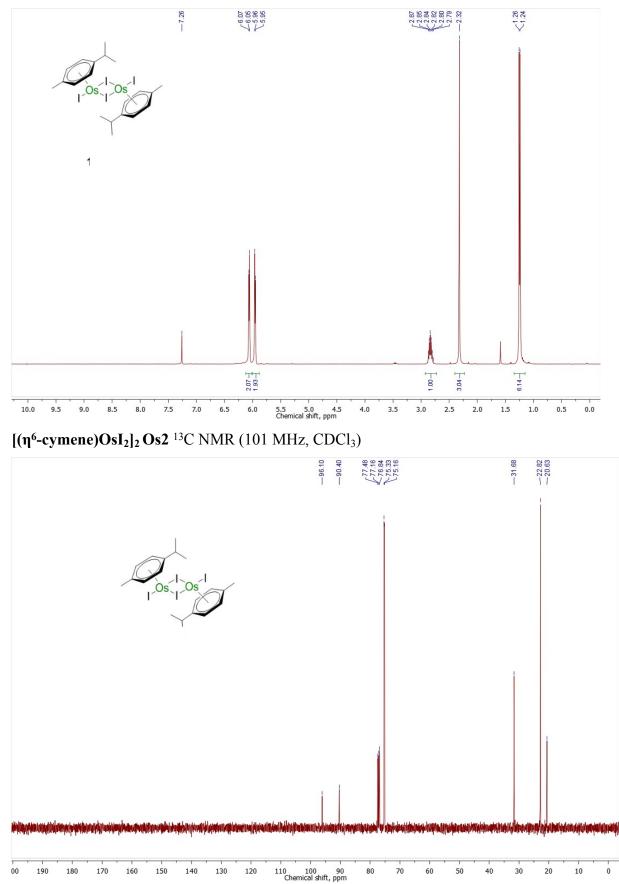
6 1 6 6 6 6 6 6 1 6 6 1 1 1 1 8 1 8 1 1 1	3.546105000 3.879917000 4.165804000 4.994846000 3.693917000 2.598827000 0.233433000 -0.929508000 -1.512408000 -2.413218000 -0.904774000 -1.317289000 0.799664000 3.002184000 0.225909000 2.198698000 4.155503000 0.698489000 -1.368817000 2.819249000 1.774566000 1.564809000 0.672224000 1.674245000	7.072044000 6.048714000 8.125061000 7.919025000 9.429534000 9.636316000 9.884221000 9.894706000 8.676019000 8.641183000 7.485936000 6.523499000 8.658168000 4.244186000 4.244186000 10.630536000 10.266162000 10.814165000 10.834055000 3.008372000 2.374166000 3.004176000 2.870206000 4.099295000	$11.062518000\\10.965526000\\10.385370000\\9.723480000\\10.580740000\\11.424639000\\13.278795000\\14.054329000\\14.054329000\\14.428786000\\15.024532000\\14.024855000\\14.024855000\\14.297977000\\12.899124000\\12.954701000\\12.954701000\\13.619934000\\11.565332000\\10.073628000\\12.981412000\\14.361368000\\13.391499000\\11.842079000\\11.105505000\\10.729065000\\11.698284000$
[Os(bip	y)(CO)I ₂ (COOH)] ⁻		
76 53 53 8 7 7 6 6 1 6 1 6 1 6 1 6 1 1 1 1 1 8 1	$\begin{array}{c} 1.269484000\\ 2.693304000\\ -0.171936000\\ 3.841891000\\ -0.639859000\\ 2.411002000\\ 0.182853000\\ 1.962322000\\ 3.496040000\\ 3.800184000\\ 4.190336000\\ 5.047458000\\ 3.756175000\\ 2.630795000\\ 0.181344000\\ -0.979341000\\ -1.557359000\\ -2.456306000\\ -0.953295000\\ -1.367260000\\ 0.750225000\\ 2.570717000\\ 0.139793000\\ 2.273023000\\ 4.277763000\\ 0.640899000\\ -1.421085000\\ 2.072154000\\ 1.093140000\\ \end{array}$	5.589536000 6.188665000 5.158142000 4.099654000 3.732276000 7.143786000 7.440397000 8.436222000 6.902623000 5.868435000 7.926216000 7.926216000 9.248594000 9.502130000 9.502130000 9.922493000 8.732336000 8.739396000 7.516512000 6.577742000 8.604384000 4.074082000 4.450430000 10.514610000 10.64319000 10.760486000 10.881229000 2.779739000 2.814154000	12.952008000 15.329637000 10.532890000 12.518353000 14.424517000 11.909080000 13.326066000 12.052444000 11.126297000 11.039509000 10.480334000 9.868031000 10.643822000 11.432087000 13.151623000 13.925863000 14.391737000 14.991591000 14.073268000 14.415466000 12.520128000 13.838393000 11.55551000 10.162134000 12.783297000 14.160798000 12.153771000 12.076292000

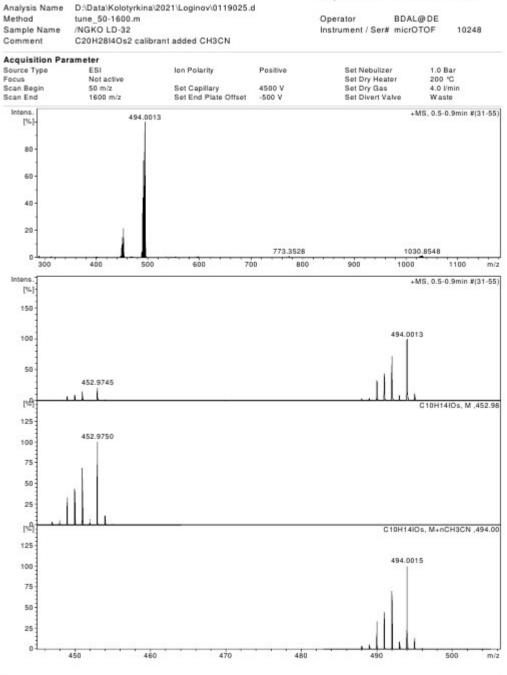
TS for decarboxylation of $[Os(bipy)(CO)I_2(COOH)]^-$

76	-0.178519000	-0.656415000	-0.136874000
53	-2.841577000	0.386862000	-0.041999000
53	2.631437000	-1.011151000	-0.535045000
8	-1.775000000	-2.154449000	2.047498000

8	-1.001225000	-2.252960000	-2.600542000
7	0.404554000	0.650008000	1.512657000
7	0.267771000	1.285971000	-1.076882000
6	0.714789000	1.951168000	1.193776000
6	0.548599000	0.229527000	2.797417000
1	0.311593000	-0.806105000	2.998923000
6	0.989997000	1.078767000	3.812216000
1	1.094436000	0.696998000	4.817484000
6	1.291941000	2.410643000	3.498501000
6	1.153840000	2.846941000	2.178500000
6	0.798852000	3.611109000	-0.709248000
6	0.677783000	3.863511000	-2.078456000
6	0.354217000	2.808194000	-2.942396000
1	0.252562000	2.961668000	-4.007088000
6	0.154710000	1.534778000	-2.407110000
1	-0.105543000	0.693917000	-3.035999000
6	0.592576000	2.311854000	-0.223882000
6	-0.813498000	-2.173732000	1.212771000
6	-0.675473000	-1.637973000	-1.619243000
1	1.397040000	3.866693000	1.916429000
1	1.638150000	3.092673000	4.262825000
1	1.047056000	4.413914000	-0.029392000
1	0.831291000	4.862824000	-2.462130000
8	0.050498000	-3.240066000	1.168286000
1	0.607797000	-2.188460000	0.275288000

7. X-ray investigations


Crystals of complexes **Os8** and **Os12** were obtained by slow interdiffusion of a two-phase system comprising hexane and a solution of the complex in dichloromethane (for **Os8**) and acetone (for **Os12**). X-ray diffraction data were collected at 120 K with APEX2 DUO CCD diffractometer using graphite monochromic Mo-K α radiation (l $\lambda = 0.71073$ Å, ω -scans). Using Olex2,¹⁶ the structures were solved with the ShelXT structure solution program ¹⁷ using Intrinsic Phasing and refined with the XL refinement package¹⁸ using Least Squares minimization. Positions of hydrogen atoms were calculated, and they all were refined in the isotropic approximation within the riding model. Crystallographic data and structure refinement parameters are listed in Table S14. CCDC 2075332 and 2075331 contain the supplementary crystallographic data for **Os8** and **Os12**, respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

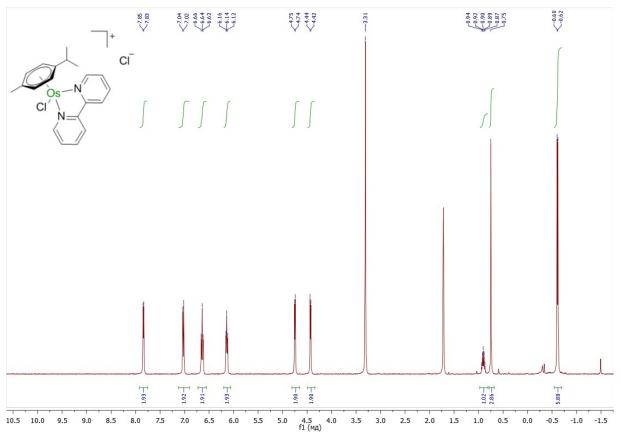

Compound	Os8	Os12
Empirical formula	C ₂₆ H ₁₆ Cl ₂ N ₂ O ₂ Os	C ₂₅ H ₂₈ ClNO ₂ Os
Molecular weight	649.51	600.13
Crystal system	Monoclinic	Monoclinic
Space group	$P2_1/n$	$P2_{1}/c$
<i>a</i> (Å)	6.961(3)	9.4652(9)
<i>b</i> (Å)	19.454(7)	9.6082(9)
<i>c</i> (Å)	16.217(6)	24.647(3)
β(deg)	95.607(8)	90.999(3)
$V(Å^3)$	2185.4(14)	2241.1(4)
Z	4	4
$D_{\text{calcd}} (\text{g cm}^{-3})$	1.974	1.779
$2\theta_{\rm max}({\rm deg})$	58	54
μ (Mo- $K\alpha$) (cm ⁻³)	61.08	58.31
Collected reflections	5808	12741

Independent reflections	5808 ($R_{\rm int} = 0.0597$)	4884 ($R_{\rm int} = 0.0670$)
Observed reflections $(I \ge 2\sigma(I))$	3768	3625
Parameters	299	276
R_I (on F for obs. refls)	0.0765	0.0404
wR_2 (on F^2 for all refls)	0.1486	0.0798
F(000)	1248	1176
GOF	1.072	0.969
Largest diff. peak and hole (e Å ⁻³)	1.939 and -1.029	1.296 and -1.148

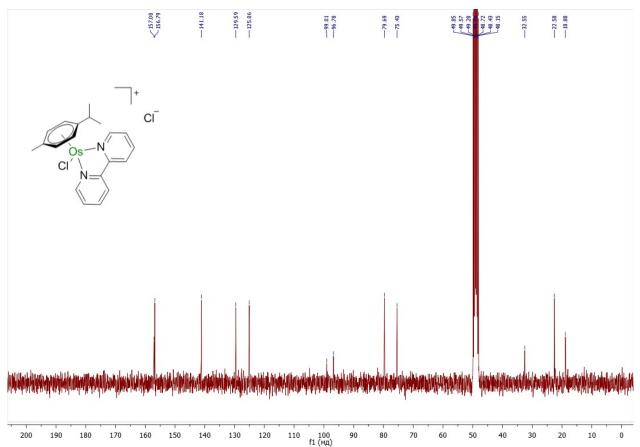
8. ¹H and ¹³C NMR spectra and HRMS of the obtained osmium complexes.

[(η⁶-cymene)OsI₂]₂ Os2 ¹H NMR (400 MHz, CDCl₃)

Bruker Compass DataAnalysis 4.0

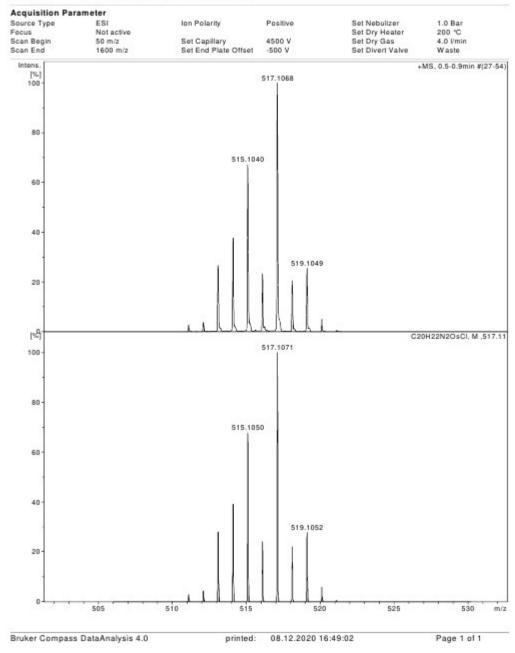

Analysis Info

printed: 19.01.2021 13:28:08

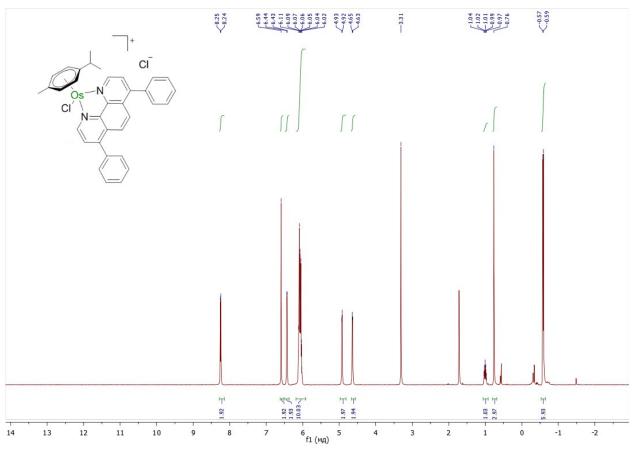

8 Page 1 of 1

Acquisition Date 19.01.2021 13:24:27

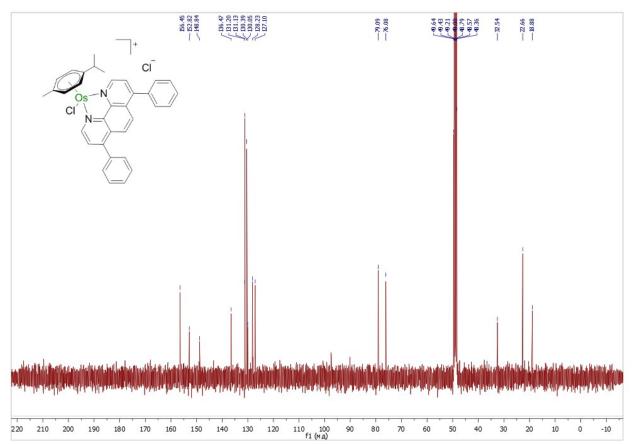
[(η⁶-cymene)Os(2,2'-bipyridine)Cl]Cl Os3 ¹³C NMR (75 MHz, CD₃OD)

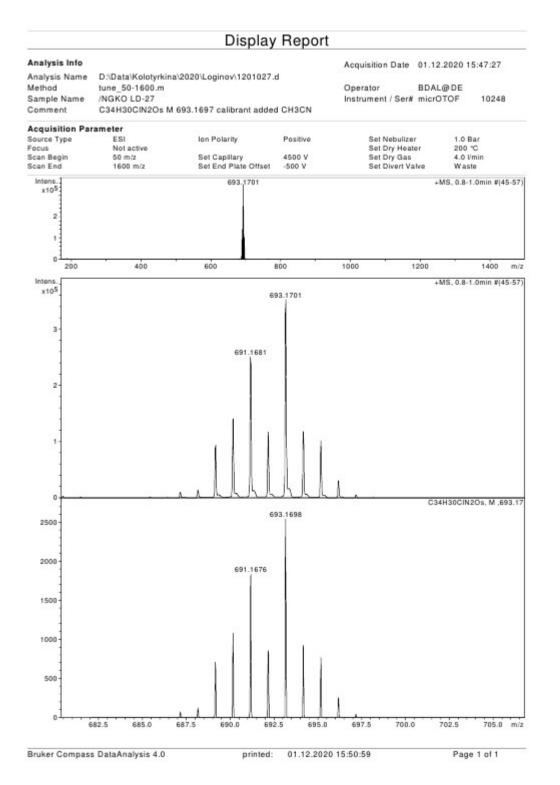


Analysis Name D:\Data\Kolotyrkina\2020\Loginov\1208040.d tune_50-1600.m Method Sample Name /NGKO LD-28 Comment

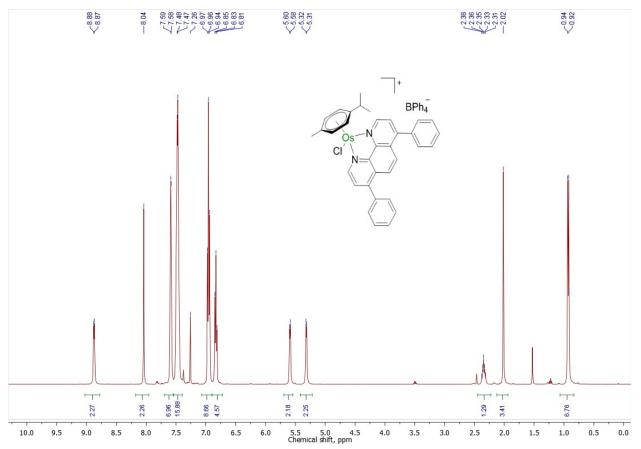

C20H22N2OsCI calibrant added CH3CN

Acquisition Date 08.12.2020 16:46:21

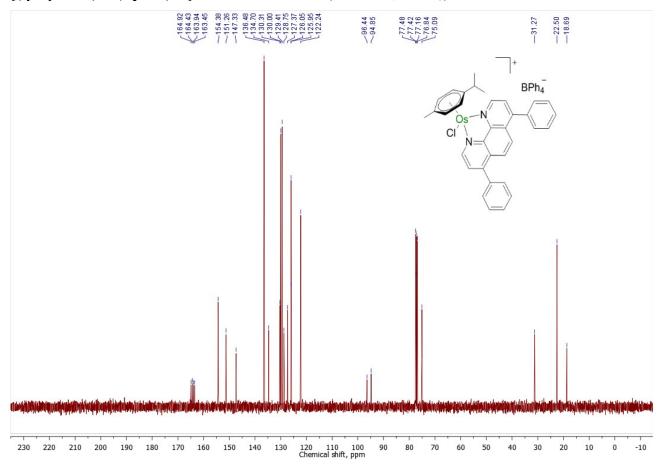

BDAL@DE Operator Instrument / Ser# micrOTOF 10248

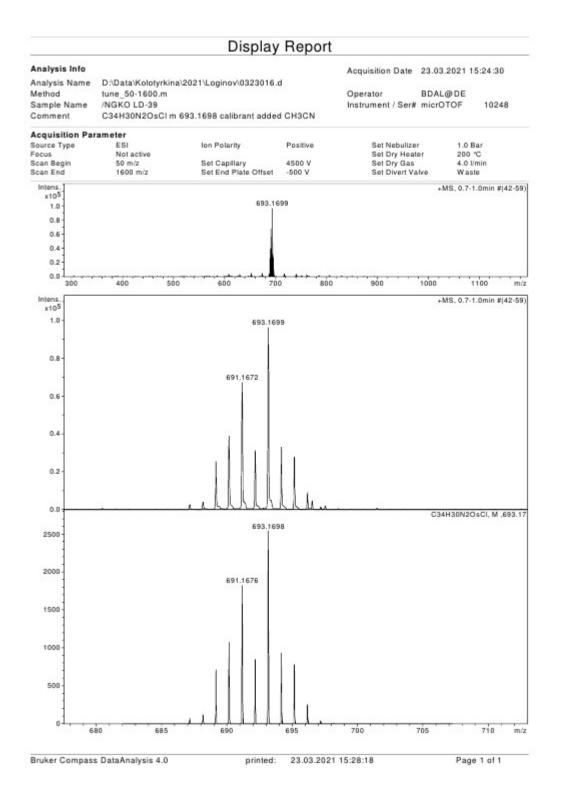


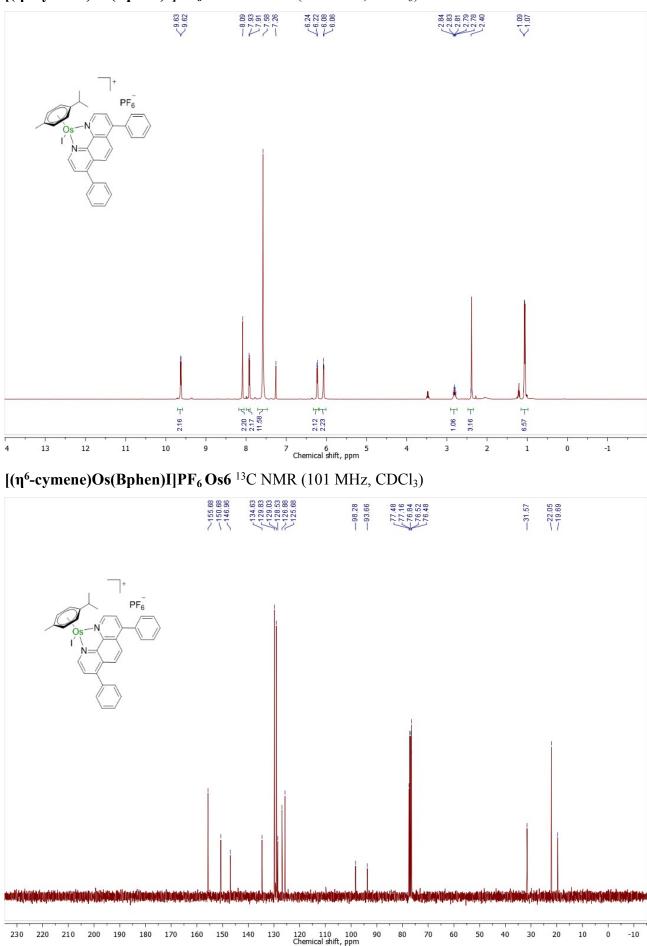
[(η⁶-cymene)Os(Bphen)Cl]Cl Os4 ¹H NMR (400 MHz, CD₃OD)

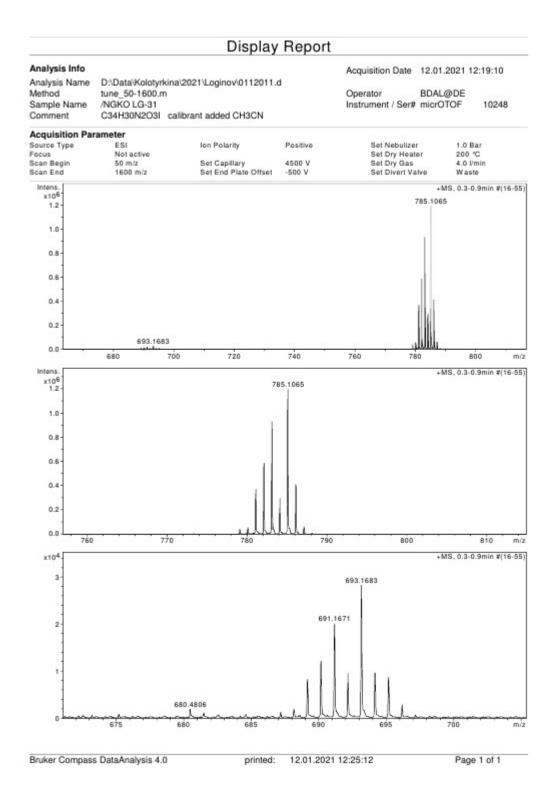


[(η⁶-cymene)Os(Bphen)Cl]Cl Os4 ¹³C NMR (101 MHz, CD₃OD)

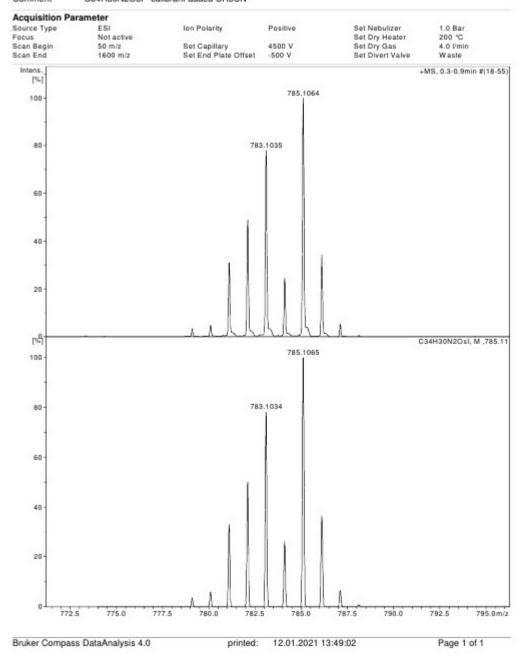


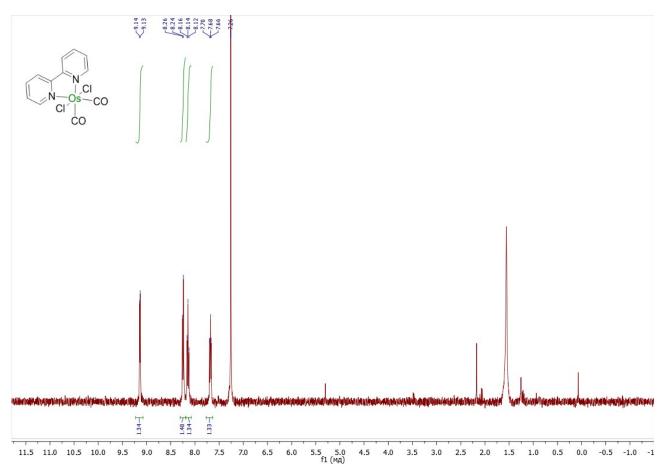



[(η⁶-cymene)Os(Bphen)Cl]BPh₄Os5 ¹H NMR (400 MHz, CDCl₃)

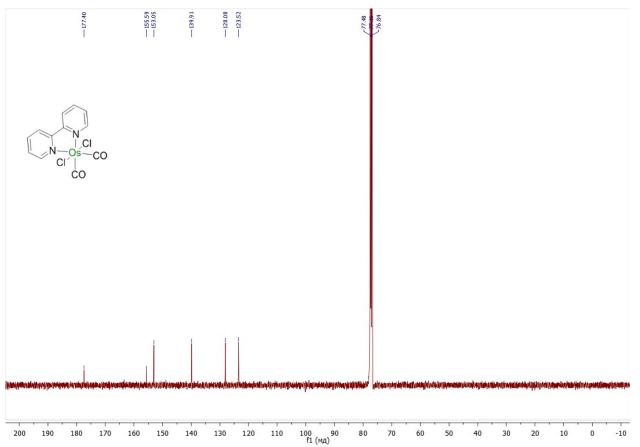

[(η⁶-cymene)Os(Bphen)Cl]BPh₄Os5 ¹³C NMR (101 MHz, CDCl₃)

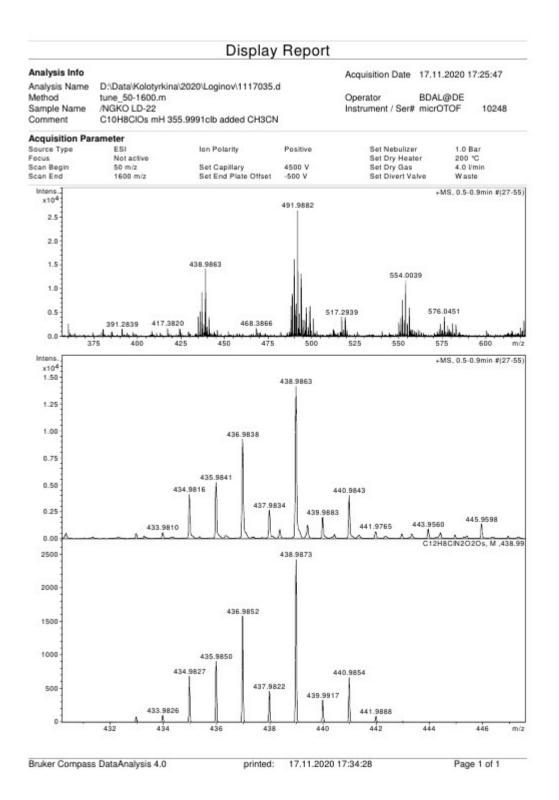
[(η⁶-cymene)Os(Bphen)I]PF₆Os6 ¹H NMR (400 MHz, CDCl₃)



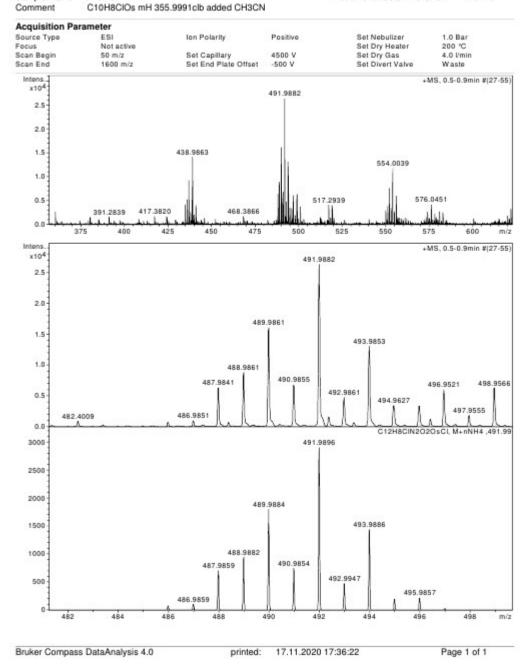


Analysis Name Method Sample Name Comment

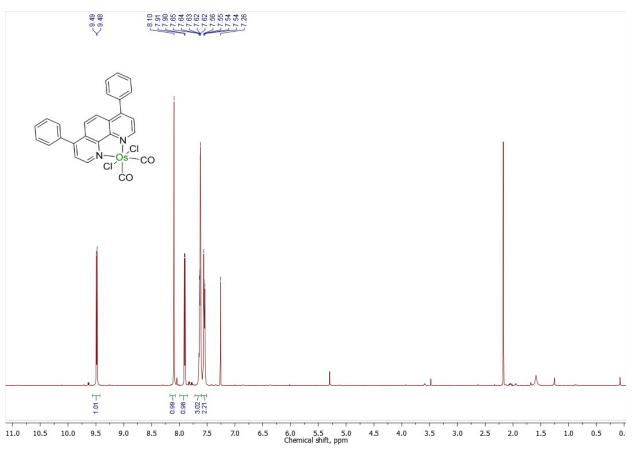

 D:\Data\Kolotyrkina\2021\Loginov\0112011.d tune_50-1600.m
 /NGKO LG-31 C34H30N2O31 calibrant added CH3CN Acquisition Date 12.01.2021 12:19:10


Operator BDAL@DE Instrument / Ser# micrOTOF 10248

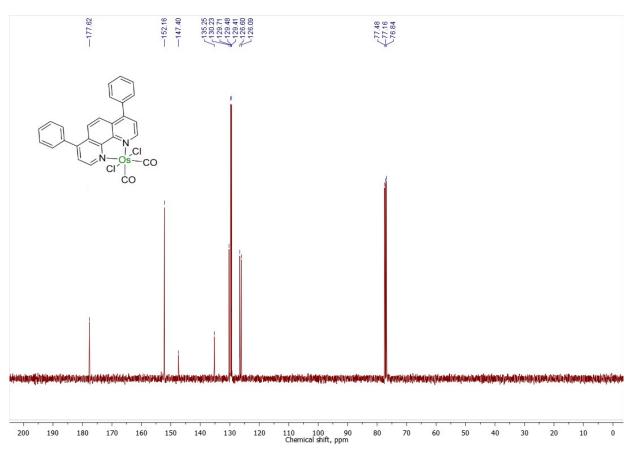
(2,2'-bipyridine)OsCl₂(CO)₂Os7 ¹³C NMR (101 MHz, CDCl₃)



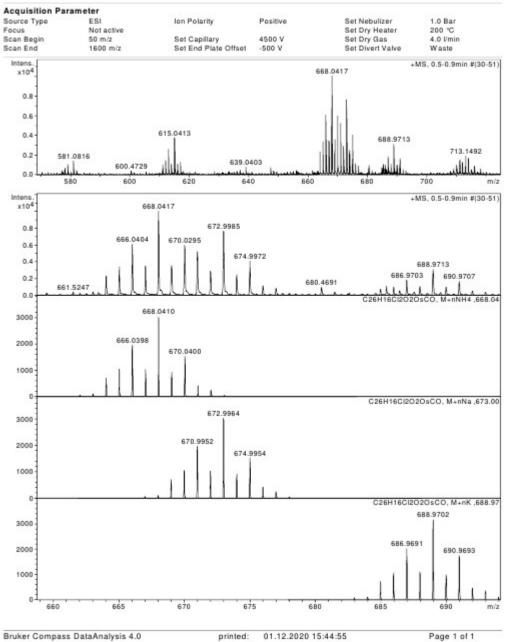
Method

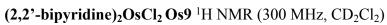

D:\Data\Kolotyrkina\2020\Loginov\1117035.d tune_50-1600.m Sample Name /NGKO LD-22 C10H8CIOs mH 355.9991clb added CH3CN

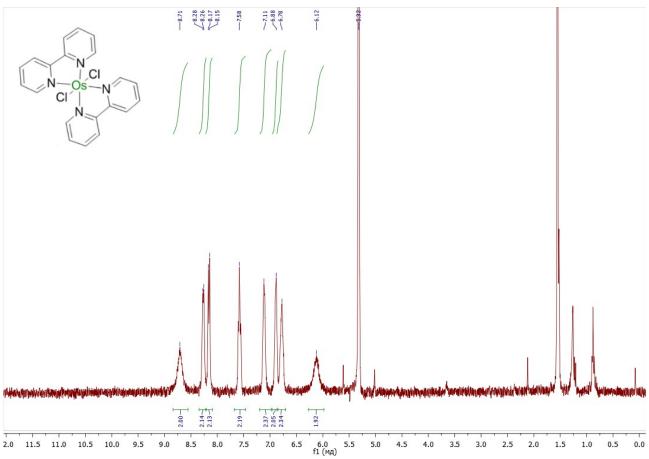
Acquisition Date 17.11.2020 17:25:47

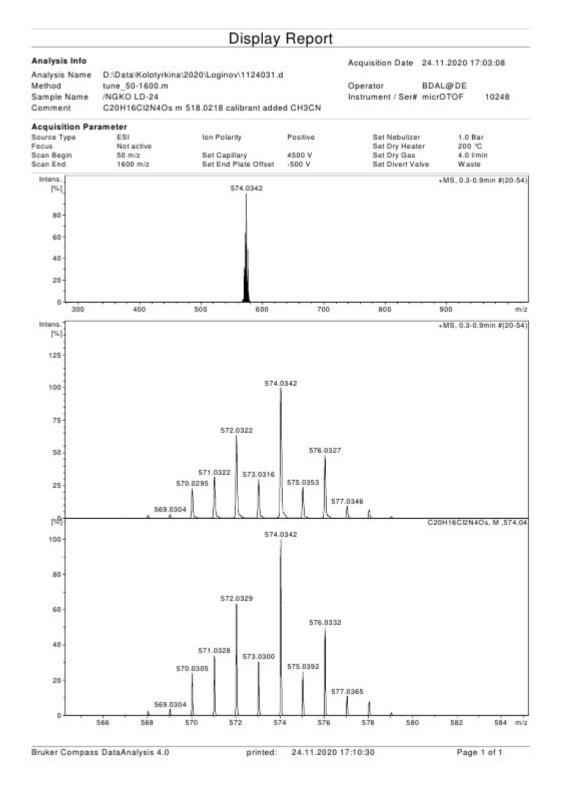

BDAL@DE Operator Instrument / Ser# micrOTOF 10248

(Bphen)OsCl₂(CO)₂Os8 ¹H NMR (400 MHz, CDCl₃)

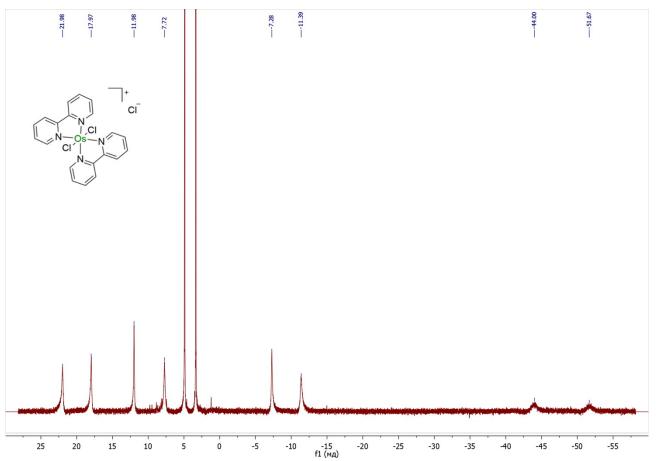

(Bphen)OsCl₂(CO)₂Os8¹³C NMR (101 MHz, CDCl₃)

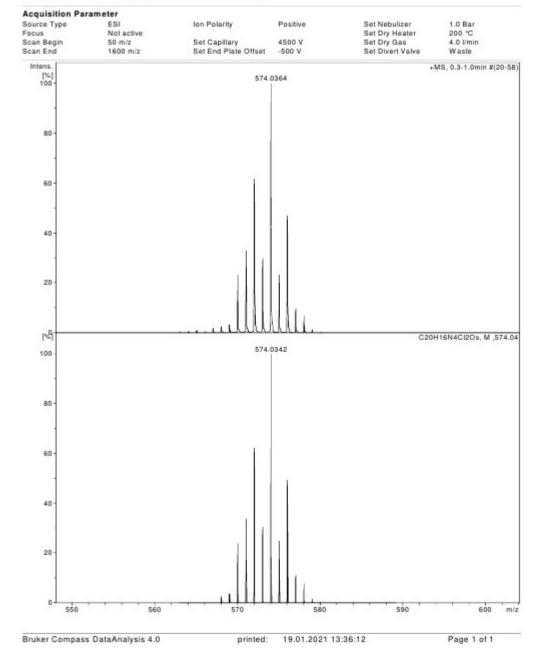


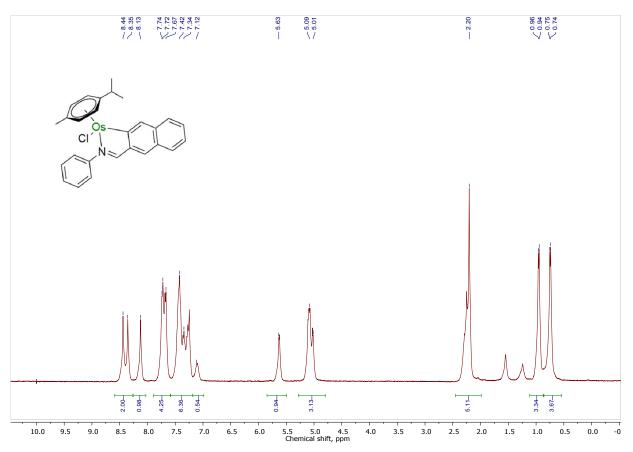

Analysis Info


Analysis Name D:\Data\Kolotyrkina\2020\Loginov\1201026.d Method tune_50-1600.m Sample Name //NGKO LD-26 Comment C26H16Cl2O2Os M 622.0117 calibrant added CH3CN Acquisition Date 01.12.2020 15:39:09

Operator BDAL@DE Instrument / Ser# micrOTOF 10248

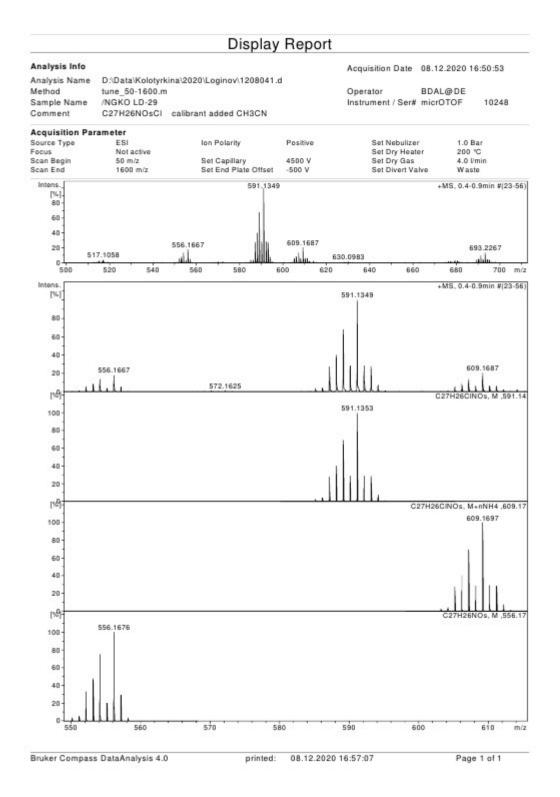



(2,2'-bipyridine)₂OsCl₃Os10 ¹H NMR (400 MHz, CD₃OD)

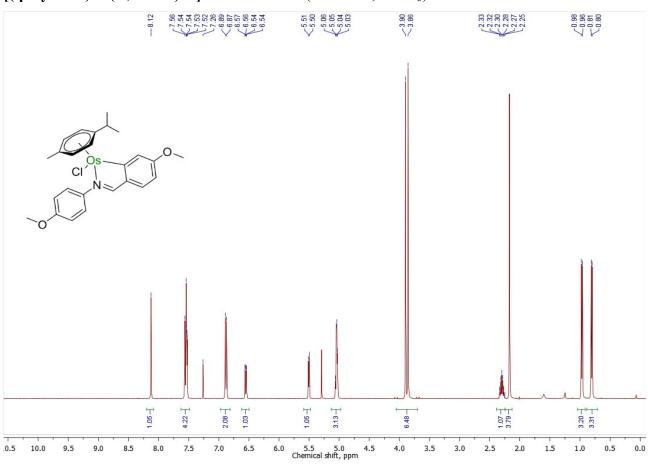

Analysis Info

Analysis Name D:\Data\Kolotyrkina\2021\Loginov\0119026.d Method tune_50-1600.m Sample Name /NGKO LD-33 Comment C20H16N4Cl2Os calibrant added CH3CN Acquisition Date 19.01.2021 13:30:09

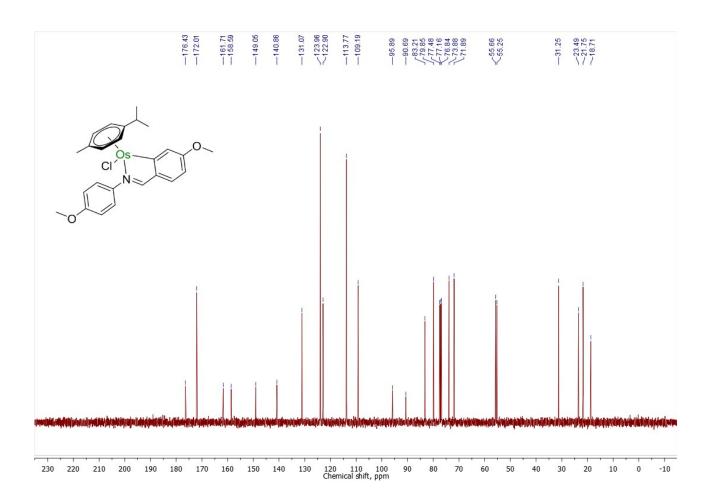
Operator BDAL@DE Instrument / Ser# micrOTOF 10248

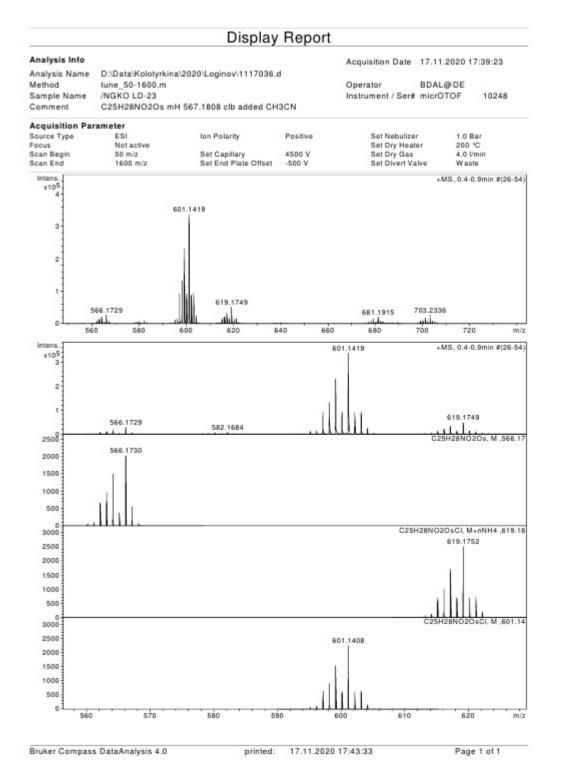


[(η⁶-cymene)Os(N,C-napht)Cl] Os11 ¹H NMR (400 MHz, CDCl₃)

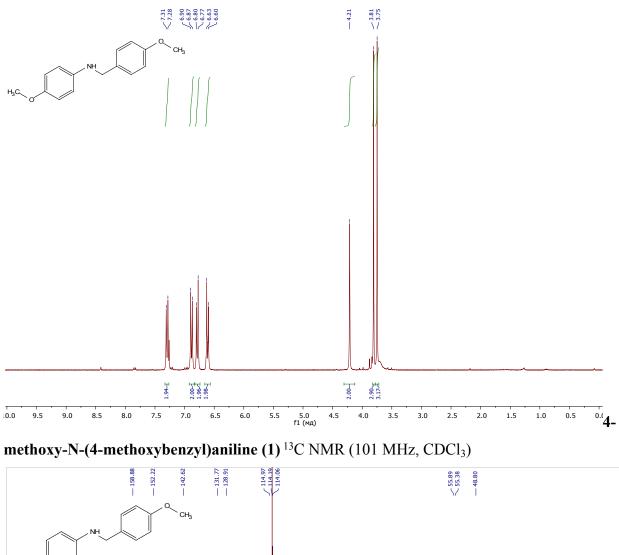


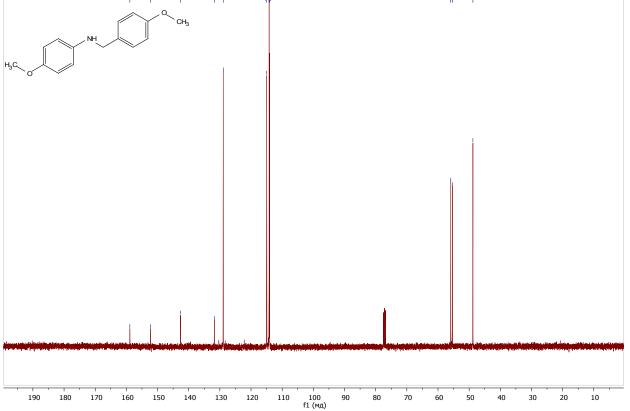
[(η⁶-cymene)Os(N,C-napht)Cl] Os11 ¹³C NMR (101 MHz, CDCl₃)

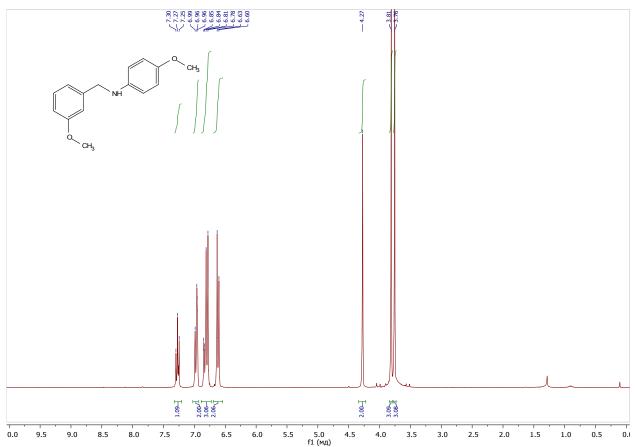



S62

[(η⁶-cymene)Os(N,C-anis)Cl] Os12 ¹H NMR (400 MHz, CDCl₃)

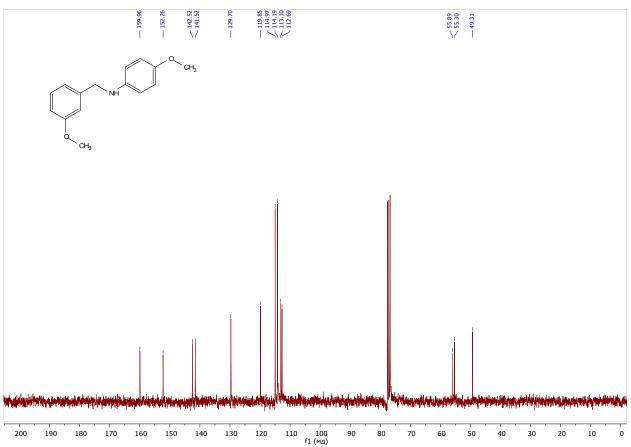

[(η⁶-cymene)Os(N,C-anis)Cl] Os12 ¹³C NMR (101 MHz, CDCl₃)

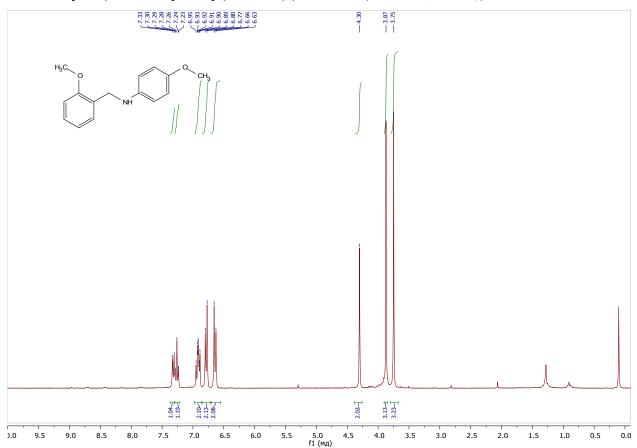




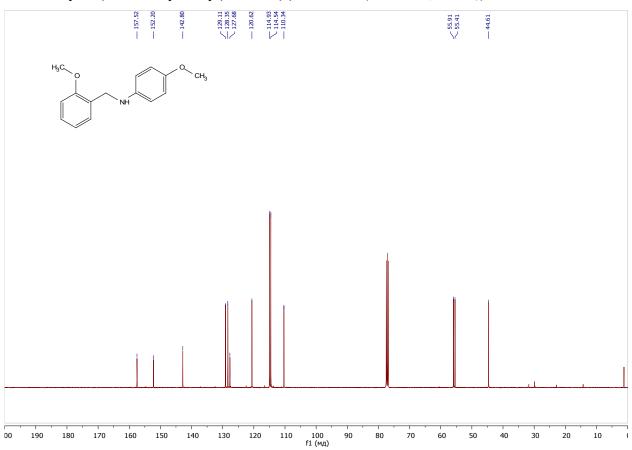
9. ¹H and ¹³C NMR spectra of the RA products.

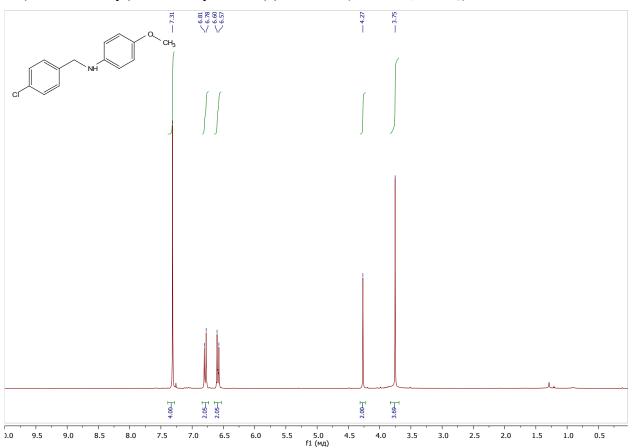
4-methoxy-N-(4-methoxybenzyl)aniline (1) ¹H NMR (300 MHz, CDCl₃)



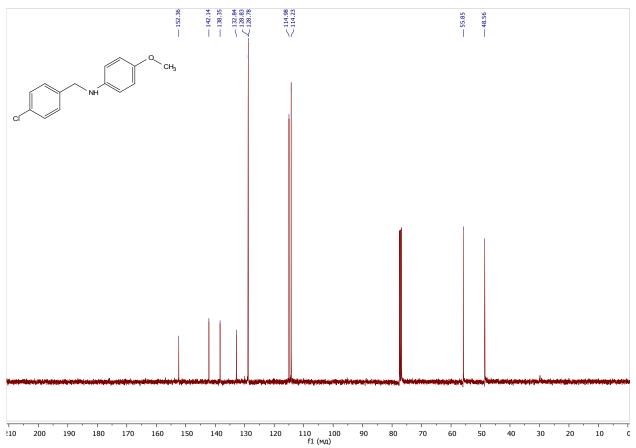


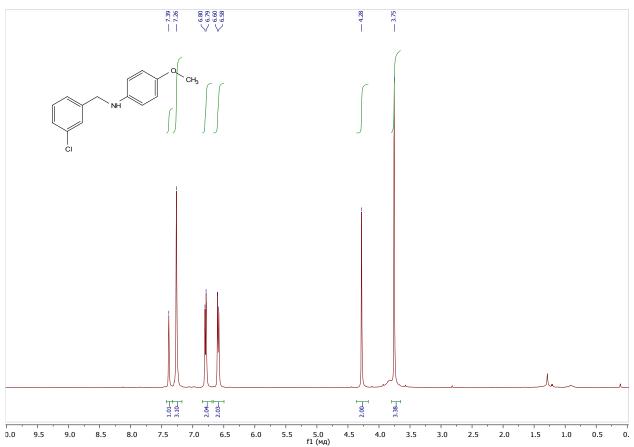
4-methoxy-N-(3-methoxybenzyl)aniline (2) ¹H NMR (300 MHz, CDCl₃)

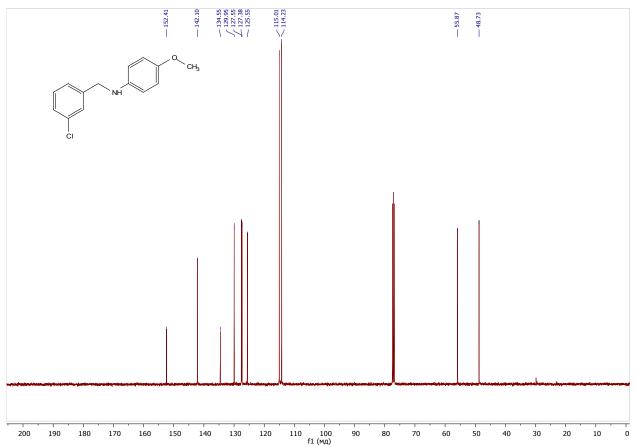

4-methoxy-N-(3-methoxybenzyl)aniline (2) ¹³C NMR (101 MHz, CDCl₃)

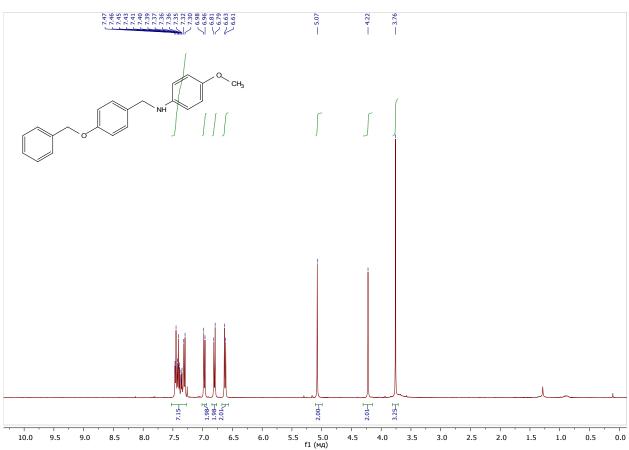


4-methoxy-N-(2-methoxybenzyl)aniline (3) ¹H NMR (300 MHz, CDCl₃)

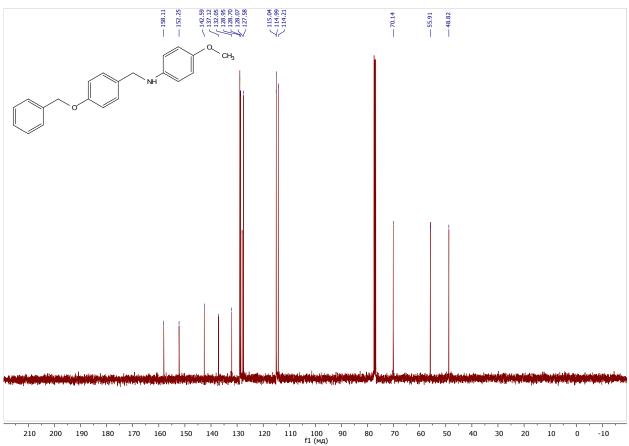

4-methoxy-N-(2-methoxybenzyl)aniline (3) ¹³C NMR (101 MHz, CDCl₃)

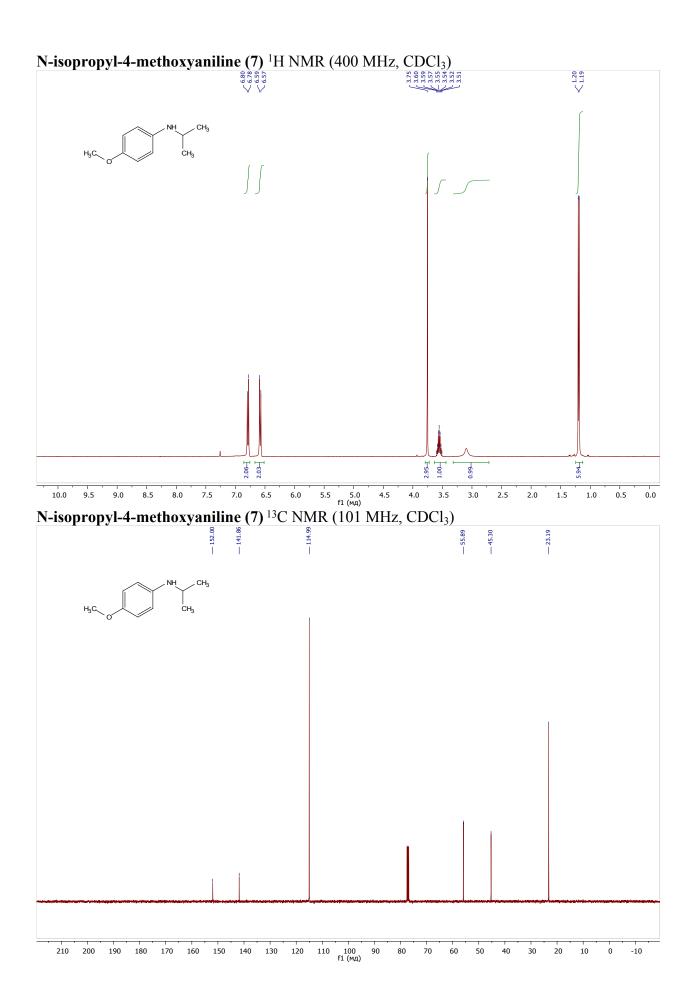

N-(4-chlorobenzyl)-4-methoxyaniline (4) ¹H NMR (300 MHz, CDCl₃)


N-(4-chlorobenzyl)-4-methoxyaniline (4) ¹³C NMR (101 MHz, CDCl₃)

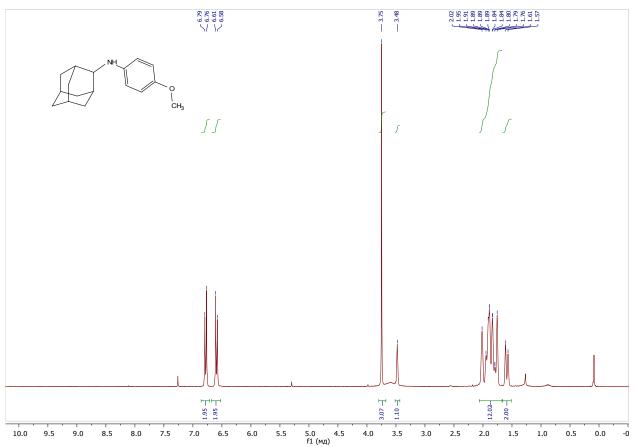


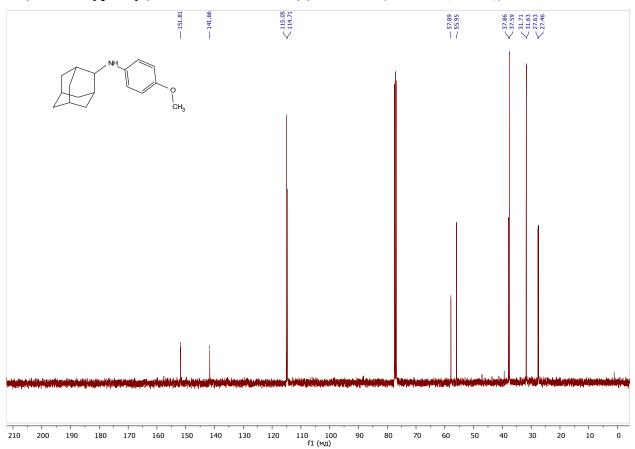
N-(3-chlorobenzyl)-4-methoxyaniline (5) ¹H NMR (400 MHz, CDCl₃)

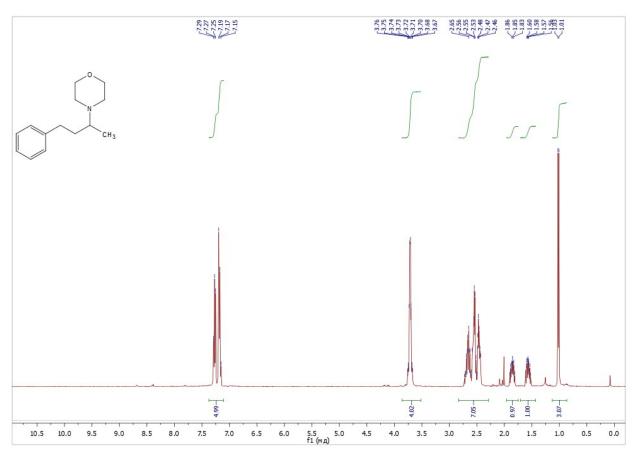

N-(3-chlorobenzyl)-4-methoxyaniline (5) ¹³C NMR (101 MHz, CDCl₃)



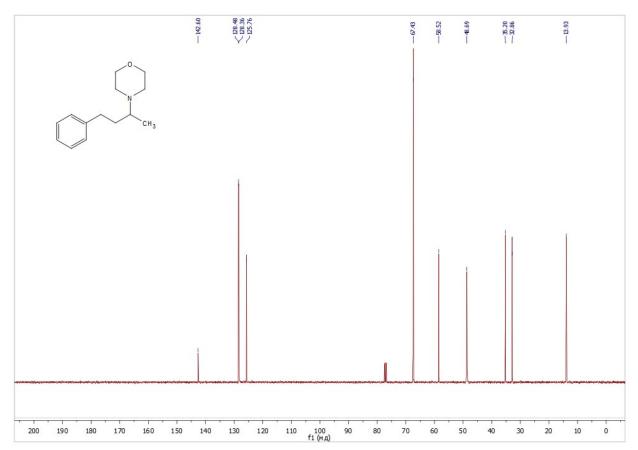
N-(4-(benzyloxy)benzyl)-4-methoxyaniline (6) ¹H NMR (400 MHz, CDCl₃)

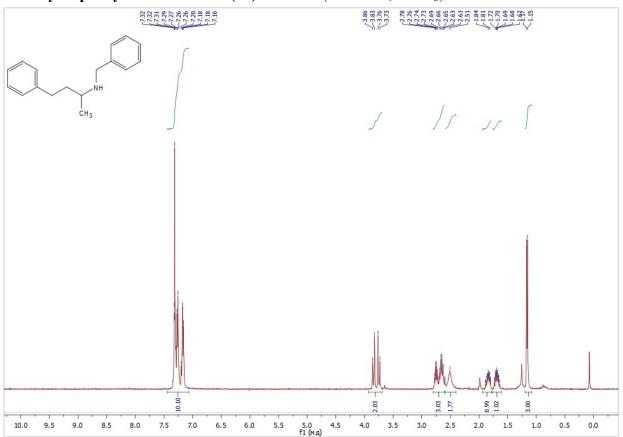

N-(4-(benzyloxy)benzyl)-4-methoxyaniline (6) ¹³C NMR (101 MHz, CDCl₃)



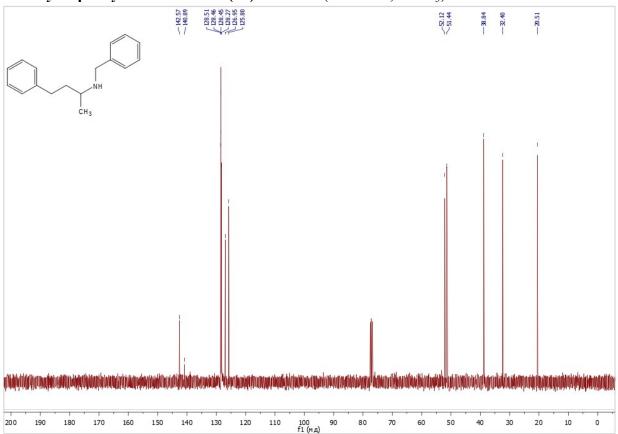

S72

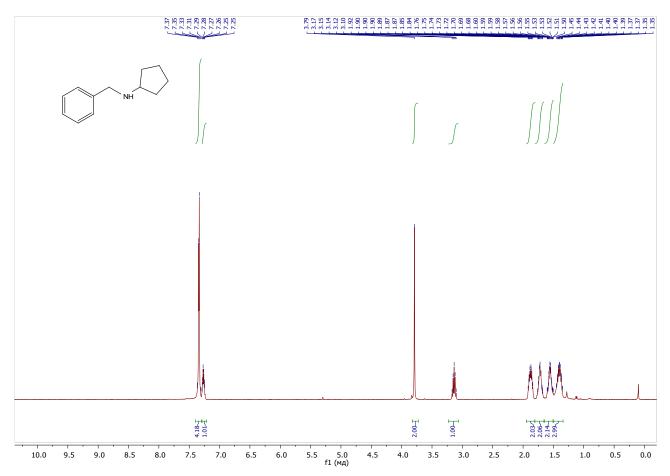
N-(4-methoxyphenyl)adamantan-2-amine (8) ¹H NMR (300 MHz, CDCl₃)

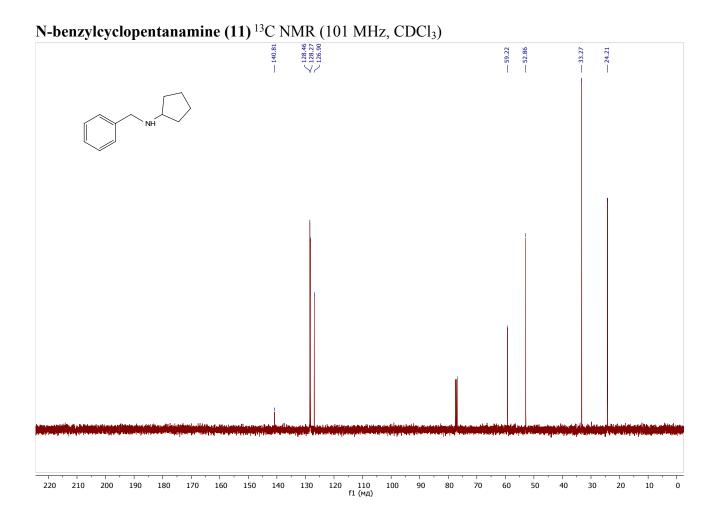

N-(4-methoxyphenyl)adamantan-2-amine (8) ¹³C NMR (101 MHz, CDCl₃)

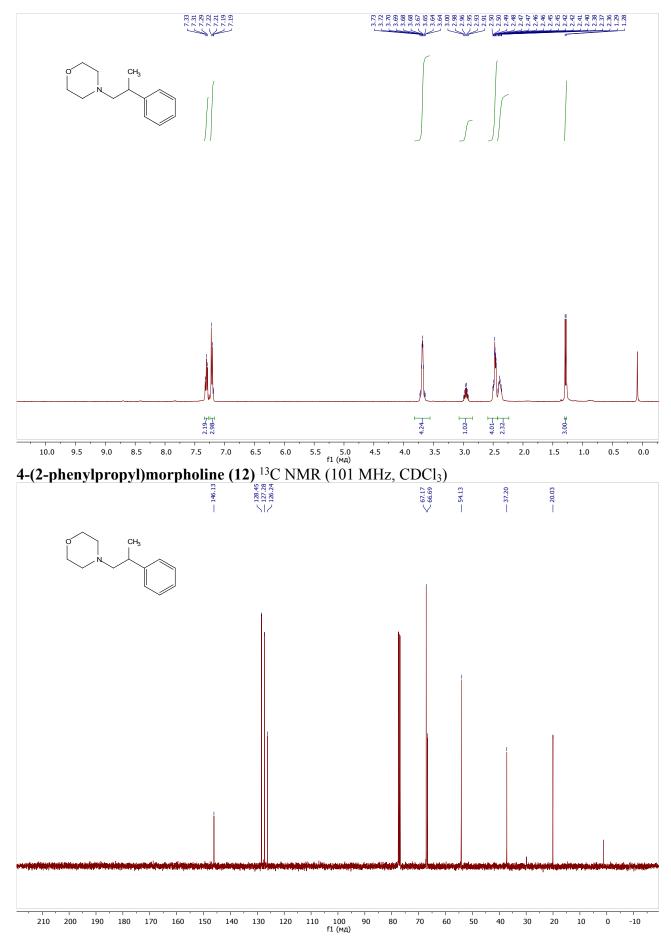


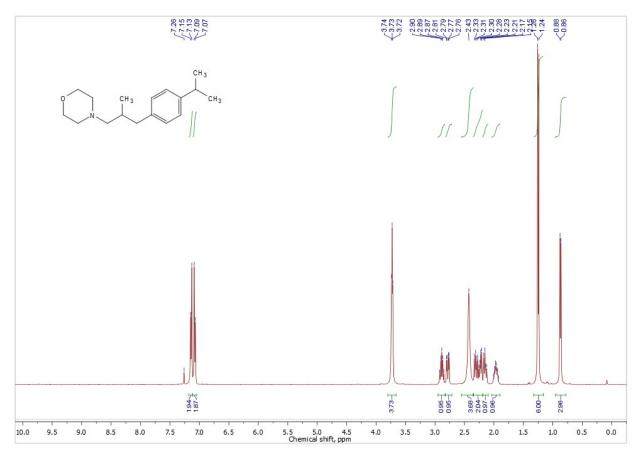
4-(4-phenylbutan-2-yl)-morpholine (9) ¹H NMR (400 MHz, CDCl₃)

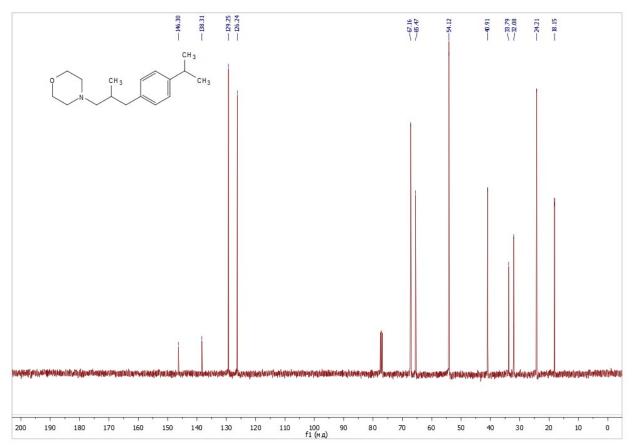

4-(4-phenylbutan-2-yl)-morpholine (9) ¹³C NMR (101 MHz, CDCl₃)




N-benzyl-4-phenylbutan-2-amine (10) ¹H NMR (400 MHz, CDCl₃)


N-benzyl-4-phenylbutan-2-amine (10) ¹³C NMR (101 MHz, CDCl₃)

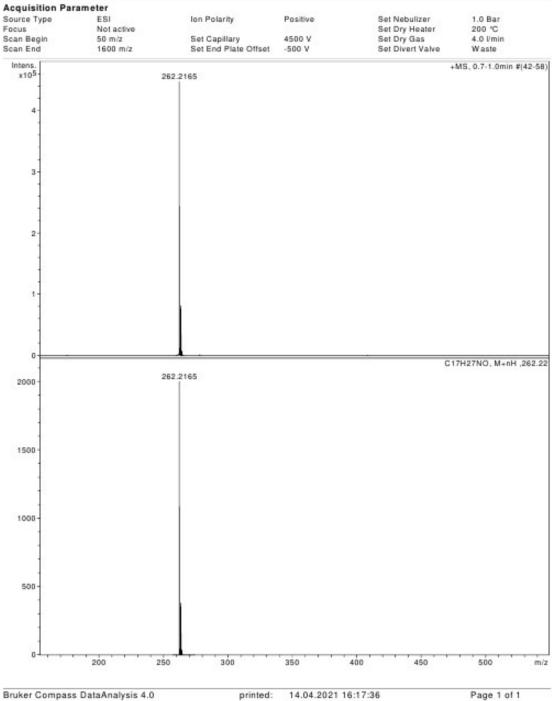

N-benzylcyclopentanamine (11) ¹H NMR (400 MHz, CDCl₃)

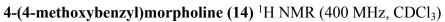


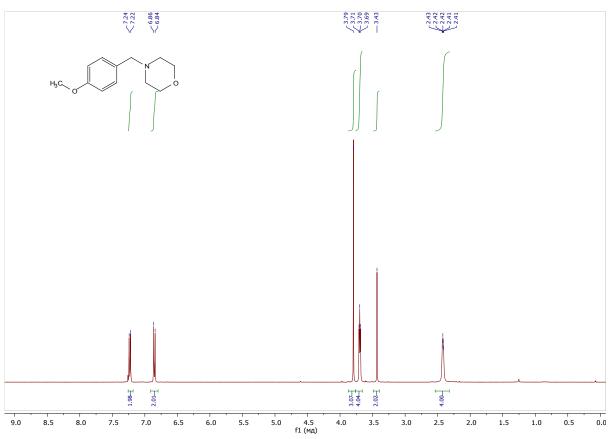
4-(2-phenylpropyl)morpholine (12) ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃)

4-(3-(4-isopropylphenyl)-2-methylpropyl)morpholine (13) ¹H NMR (400 MHz, CDCl₃)

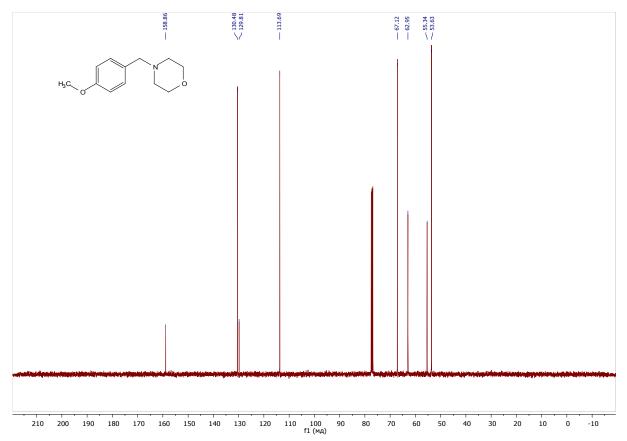
4-(3-(4-isopropylphenyl)-2-methylpropyl)morpholine (13) ¹³C NMR (101 MHz, CDCl₃)

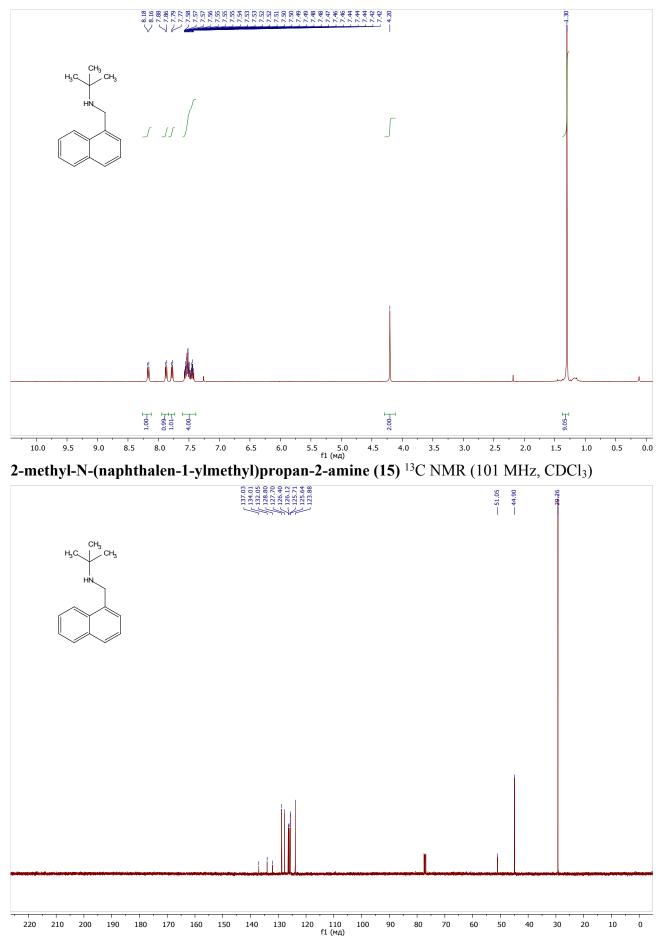

Display Report


Analysis Info


Analysis Name D:\Data\Kolotyrkina\2021\Novikov\0414023.d Method tune_50-1600.m Sample Name /MNOV LB-05-iPr Comment C17H27NO mH 262.2165 calibrant added CH3CN

Acquisition Date 14.04.2021 16:14:00


Operator BDAL@DE Instrument / Ser# micrOTOF 10248



4-(4-methoxybenzyl)morpholine (14) ¹³C NMR (101 MHz, CDCl₃)

2-methyl-N-(naphthalen-1-ylmethyl)propan-2-amine (15) ¹H NMR (400 MHz, CDCl₃)

10. References

- M. M. Vinogradov, Y. N. Kozlov, D. S. Nesterov, L. S. Shul'pina, A. J. L. Pombeiro and G. B. Shul'pin, *Catal. Sci. Technol.*, 2014, 4, 3214–3226.
- 2 E. Z. Jandrasics and F. Richard Keene, J. Chem. Soc. Dalt. Trans., 1997, 153–160.
- 3 D. A. Buckingham, F. P. Dwyer, H. A. Goodwin and A. M. Sargeson, *Aust. J. Chem.*, 1964, 17, 325–336.
- 4 P. N. Kolesnikov, N. Z. Yagafarov, D. L. Usanov, V. I. Maleev and D. Chusov, *Org. Lett.*, 2015, **17**, 173–175.
- 5 E. Kuchuk, K. Muratov, D. S. Perekalin and D. Chusov, Org. Biomol. Chem., 2019, 17, 83–87.
- 6 C. Zhu and T. Akiyama, *Synlett*, 2011, **2011**, 1251–1254.
- V. B. Kharitonov, E. Podyacheva, Y. V Nelyubina, D. V Muratov, A. S. Peregudov, G. Denisov, D. Chusov and D. A. Loginov, *Organometallics*, 2019, 38, 3151–3158.
- Q. Lei, Y. Wei, D. Talwar, C. Wang, D. Xue and J. Xiao, *Chem. A Eur. J.*, 2013, 19, 4021–4029.
- 9 L.-Y. Fu, J. Ying, X. Qi, J.-B. Peng and X.-F. Wu, J. Org. Chem., 2019, 84, 1421–1429.
- 10 O. I. Afanasyev, D. L. Usanov and D. Chusov, Org. Biomol. Chem., 2017, 15, 10164–10166.
- Y. Otake, J. D. Williams, J. A. Rincón, O. de Frutos, C. Mateos and C. O. Kappe, *Org. Biomol. Chem.*, 2019, 17, 1384–1388.
- 12 N. Z. Yagafarov, D. L. Usanov, A. P. Moskovets, N. D. Kagramanov, V. I. Maleev and D. Chusov, *ChemCatChem*, 2015, 7, 2590–2593.
- Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 14 Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101.
- 15 A. V Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378–6396.
- 16 O. V Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl.

Crystallogr., 2009, 42, 339–341.

- 17 G. Sheldrick, Acta Crystallogr. Sect. A, 2015, 71, 3–8.
- 18 G. Sheldrick, *Acta Crystallogr. Sect. A*, 2008, **64**, 112–122.