Supporting Information

Silica-decorated Ni–Zn alloy as a highly active and selective catalyst for acetylene semihydrogenation

Wiyanti F. Simanullang,^{a,†} Jiamin Ma,^{a,†} Ken-ichi Shimizu,^{a,b}

Shinya Furukawa,*^{,a,b,c}

^a Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan

^b Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-

8520, Japan

^c Japan Science and Technology Agency, PRESTO, Chiyoda-ku, Tokyo 102-0076, Japan

E-mail: furukawa@cat.hokudai.ac.jp, Tel: +81-11-706-9162, Fax: +81-11-706-9163

[†] These authors equally contributed.

Experimental details

Catalyst Preparation

Ni and Ni–Zn alloy nanoparticles supported on silica (Ni/SiO₂ and Ni–Zn/SiO₂, Ni loading: 2 wt%) were prepared by pore-filling impregnation method. Aqueous solution of Ni (NO₃)₃·6H₂O (Wako, 99%) alone or Ni (NO₃)₃·6H₂O and Zn (NO₃)₂·6H₂O (Wako, 99%) with molar ratio 1:1 were added to dried silica gel (CARiACT G-6, Fuji Silysia, $S_{BET} = 470 \text{ m}^2\text{g}^{-1}$) so that the solutions filled the silica pores. The mixtures were sealed overnight at room temperature and dried over liquid nitrogen under vacuum overnight followed by drying at 90°C. The reduction under flowing H₂ at 600 °C for 1 h was then performed. Silica decorated Ni (Si–Ni/SiO₂) and Ni–Zn nanoparticles supported on silica (Si–Ni–Zn/SiO₂) were prepared by adding ethanol solution of C₁₈H₁₆OSi (Mr = 276.40 g mol⁻¹, Tokyo Chemical Industry Co., Ltd) and Ni (NO₃)₃·6H₂O (Wako, 99%) with Zn (NO₃)₂·6H₂O (Wako, 99%) in a similar fashion to that of Ni/SiO₂ or Ni–Zn/SiO₂ except drying over the hot plate. The specific surface area of the prepared catalysts were as follows: Ni–Zn/SiO₂, $S_{BET} = 454 \text{ m}^2\text{g}^{-1}$; Si–Ni–Zn/SiO₂, $S_{BET} = 451 \text{ m}^2\text{g}^{-1}$, indicating that the silica-decoration did not decrease the surface area.

Reaction condition

The catalytic activities of the prepared catalysts were tested in hydrogenation of acetylene. The mixture of Ni-based catalysts (15 mg) and quartz sand (Miyazaki Chemical Co., $250 \sim 420 \ \mu\text{m}$, 2 g) was filled into a quartz glass tube (internal diameter, 10 mm) and put in a fixed bed continuous reactor. Prior to the activity test, the catalyst was reduced under flowing H₂ (10 mL min⁻¹) at 500°C for 0.5 h and the temperature was cooled down to the reaction temperature. The reaction was initiated by flowing the gas mixture: (C₂H₂:H₂:He = 2:20:10 mL min⁻¹: GHSV = 128,000 mL h⁻¹ g⁻¹). The gas phase was analyzed by an online thermal conductivity detector (TCD) gas chromatography (Shimadzu GC-8A) equipped downstream connected to the Unipack S packed column. The catalytic performance (C₂H₂ conversion and C₂H₄ selectivity) at 15 min on stream was reported. For the stability test, 60 mg of catalyst was used. C₂H₂ conversion and C₂H₄ selectivity were calculated using the following equations:

C₂H₂ conversion (%) =
$$(F_{C2H2,in} - F_{C2H2,out}) / F_{C2H2,in} \times 100$$

C₂H₄ selectivity (%) = $F_{C2H4,out} / (F_{C2H2,in} - F_{C2H2,out}) \times 100$

Characterization

The crystal structure of the prepared catalyst was examined by powder X-ray diffraction (XRD) using

a Rigaku MiniFlex II/AP diffractometer with Cu K α radiation.

High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) was carried out using a JEOL JEM-ARM200 M microscope equipped with an energy dispersive X-ray (EDX) analyzer (EX24221M1G5T). STEM analysis was performed at an accelerating voltage of 200 kV. To prepare the TEM specimen, all samples were sonicated in ethanol and then dispersed on a Mo grid supported by an ultrathin carbon film.

Reduction properties of the as-prepared catalyst were analyzed by temperature programmed reduction method by H₂ (H₂-TPR) by using a BELCAT- II instrument. Prior to analysis, 30 mg of catalyst was pretreated at 150°C for 1 h under inert He flow to remove absorbed water, then the sample was heated under H₂ flow (5v% H₂ balanced with Ar 30 sccm) in the temperature from 50°C to 900°C at a ramping rate of 2°C/min⁻¹.

Computational Details

Periodic density functional theory (DFT) calculations, except frequency calculations, were performed using the CASTEP code¹ with Vanderbilt-type ultrasoft pseudopotentials² and a revised Perdew– Burke–Ernzerhof exchange-correlation functional (RPBE)³ based on the generalized gradient approximation (GGA). The plane-wave basis set was truncated at a kinetic energy of 370 eV. A Fermi smearing of 0.1 eV was utilized. The reciprocal space was sampled using a *k*-point mesh with a typical spacing of 0.04 Å⁻¹ generated by the Monkhorst–Pack scheme.⁴ Geometry optimizations were performed in supercell structures using periodic boundary conditions. Surfaces were modeled using 4 atomic layer-thick metallic slabs. An L1₂-type Ni₃Zn structure was considered as the model of the Ni_{0.75}Zn_{0.25} alloy. The surface was modeled using Ni₃Zn(111) and Ni₃Zn(211) planes for the terrace and step sites of Ni–Zn, respectively, with a 13 Å vacuum region. Convergence criteria comprised a) a self-consistent field (SCF) tolerance of 1.0×10^{-6} eV/atom, b) an energy tolerance of 1.0×10^{-5} eV/atom, c) a maximum force tolerance of 0.05 eV Å⁻¹, and d) a maximum displacement tolerance of 1.0×10^{-3} Å for structure optimization and energy calculation. Frequency calculations of adsorbed CO molecules were conducted by the DMol³ code⁵ based on the aforementioned optimized structures. These calculations involved the RPBE functional, a double-numeric quality basis set with polarization functions (DNP, comparable to Gaussian 6-311G**)⁶ with a real-space cutoff of 4.2 Å, DFT semi-core pseudopotential core treatment,⁷ and a Fermi smearing of 0.1 eV. The SCF convergence was accelerated using the iterative scheme proposed by Kresse and Furthmüller.⁸ The partial Hessian matrix including C and O atoms was computed to evaluate the harmonic frequencies for adsorbed CO. All computed harmonic frequencies were scaled by an empirical factor of 1.056, which corresponds to the ratio of experimental⁹ and computed values for gas-phase CO (2143 cm⁻¹/2028.7 cm⁻¹).

Supplementary Figures

Fig. S1. XRD patterns of Ni–Zn/SiO₂ and Si–Ni–Zn/SiO₂. References are shown as black vertical lines.

Fig. S2. H₂-TPR profiles of Ni–Zn/SiO₂ and Si–Ni–Zn/SiO₂.

Fig. S3. Temperature-dependences of C_2H_2 conversion and C_2H_4 selectivity for Ni–Zn/SiO₂ and Si–Ni–Zn/SiO₂ catalysts.

Fig. S4. Stability test for acetylene semihydrogenation using Si–Ni–Zn/SiO₂.

Fig. S5. Arrhenius-type plots obtained in acetylene semihydrogenation on Ni–Zn/SiO₂ and Si–Ni–Zn/SiO₂.

entry	catalyst	Ni wt%	amount	C_2H_2 flow	C ₂ H ₂ :H ₂ :C ₂ H ₄ :He(Ar)	GHSV /	conv.	sel.	temp.	specific rate /	ref
			/ mg	/mLmin ⁻¹	/ mLmin ⁻¹	$mLg^{-1}h^{-1}$	(%)	(%)	/ °C	$mL_{C2H2}min^{-1}g_{Ni}{}^{-1}$	
1	Si-Ni-Zn/SiO ₂	2	15	2	2:20:0:10	128,000	97	80	200	6,467	this work
2	NiCu _{0.125} /MCM-41	1	100	3.3	3.3:10:0:0	8,000	100	63	250	3,333	10
3	AgNi _{0.125} /SiO ₂	0.37	30	0.3	0.3:6:6:17.7	60,000	98	25	200	2,649	11
4	Ni ₃ Ge/MCM-41	3.2	15.6	3.9	3.9:8.1:0:17	111,360	30	87	250	2340	12
5	Ni–Zn/SiO ₂	2	15	2	2:20:0:10	128,000	15	80	200	1,007	this work
6	NiGa	10	50	1.2	1.2:12:24:82.5	144,000	90	82	190	216	13
7	Ni ₃ Ga/MgAl ₂ O ₄	2	100	0.33	0.33:6.7:33.3:26.67	40,000	92	77	220	153	14
8	Ni/MCM-41	25	100	3.7	3.7:7.4:0:55.5	40,000	96	87	240	142	15
9	Ni–CeO ₂	1.54	200	0.35	0.35:24.5:1.4:43.75	21,000	100	100	200	114	16
10	Ni ₆ In/SiO ₂	8	500	3	3:30:0:267	36,000	100	64	200	75	17
11	Na-Ni/CHA	3.5	200	0.5	0.5:8:0:41.5	15,000	100	97	170	71	18
12	Ni-SAs/N-C	5.67 ^a	400	0.2	0.2:4:20:15.8	6,000	96	91	200	8	19

Table S1. Summary of the catalytic performance of Ni-based catalyst in acetylene semihyderogenation.

^{*a*} Although the loading amount of Ni was not reported, it was estimated from the original Ni content²⁰ and the weight loss by TG.

Supplementary references

- M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, S. J. Clark, M. C. Payne, J. Phys. Condens. Matter 2002, 14, 2717–2744.
- 2. D. Vanderbilt, Phys. Rev. B 1990, 41, 7892–7895.
- 3. B. Hammer, L. B. Hansen, J. K. Norskov, *Phys. Rev. B* 1999, **59**, 7413–7421.
- 4. H. J. Monkhorst, J. D. Pack, *Phys. Rev. B* 1976, **13**, 5188–5192.
- 5. B. Delley, J. Chem. Phys. 1990, 92, 508–517.
- 6. Y. Inada, H. Orita, J. Comput. Chem. 2008, 29, 225–232.
- 7. B. Delley, *Phys. Rev. B* 2002, **66**, 155125.
- 8. G. Kresse, J. Furthmuller, *Phys. Rev. B* 1996, **54**, 11169–11186.
- D. Scarano, S. Bordiga, C. Lamberti, G. Spoto, G. Ricchiardi, A. Zecchina, C. O. Arean, *Surf. Sci.* 1998, 411, 272–285.
- 10. S. Zhou, L. Kang, X. Zhou, Z. Xu, M. Zhu, Nanomaterials, 2020, 10, 509.
- G. Xian, P. Xiao, Y. Liu, A. Wang, Y. Su, L. Li, T. Zhang, *Appl. Catal. A: Gen.*, 2017, 545, 90–96.
- 12. T. Komatsu, K. Sou, K. Ozawa, J. Mol. Catal. A: Chem., 2010, 319, 71-77.
- Y. Cao, H. Zhang, S. Ji, Z. Sui, Z. Jiang, D. Wang, Y. Li, *Angew. Chem. Int. Ed.*, 2020, 132, 11744–11749.
- Y. Liu, X. Liu, Q. Feng, D. He, L. Zhang, C. Lian, R. Shen, G. Zhao, Y. Ji, D. Wang, G. Zhou, Y. Li, *Adv. Mater.*, 2016, 28, 4747–4754.
- 15. J. Zhao, L. He, J. Yu, Y. Shi, R. Miao, Q. Guan. P. Ning, New J. Chem., 2021, 45, 1054–1062.
- C. Riley , A. D. La Riva , S. Zhou , Q. Wan , E. J. Peterson , K. Artyushkova , M. D. Farahani ,
 H. B. Friedrich , L. K. Burkemper and N. Atudorei , *ChemCatChem*, 2019, 11 , 1526–1533.
- 17. Y. Chen, J. Chen, Appl. Surf. Sci., 2016, 387, 16-27.
- Y. Chai, G. Wu, X. Liu, Y. Ren, W. Dai, C. Wang, Z. Xie, N. Guan, L. Li, *J. Am. Chem. Soc.* 2019, 141, 9920–992.
- X. Dai, Z. Chen, T. Yao, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, S. Wei, Y. Wu and Y. Li, *Chem. Commun.*, 2017, **53**, 11568–11571.
- 20. R. Li, X. Ren, X. Feng, X. Li, C. Hu, B. Wang, Chem. Commun., 2014, 50, 6894-6897.