Supporting Information

Promoting superoxide generation in Bi₂WO₆ by less electronegative substitution for enhanced photocatalytic performance: an example of Te doping

Anurak Waehayee^{a,b}, Chawit Pongsawakul^a, Apinya Ngoipala^c, Praphaiphon Phonsuksawang^{a,b}, Arreerat Jiamprasertboon^{a,b}, Suttipong Wannapaiboon^d, Hideki Nakajima^d, Teera Butburee^{e,f}, Suwit Suthirakun^{a,f}, Theeranun Siritanon^{a,f*}

^a School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, 30000, Thailand.

^b Institute of Research and Development, Suranaree University of Technology, 111 University Avenue, Muang, 30000, Thailand.

^c School of Physics, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang, 30000, Thailand.

^d Synchrotron Light Research Institute, 111 University Avenue, Nakhon Ratchasima 30000, Thailand.

^e National Nanotechnology Center, National Science and Technology Development Agency,
111 Thailand Science Park, Pathum Thani 12120, Thailand.

^fResearch Network NANOTEC – SUT on Advanced Nanomaterials and Characterization, School of chemistry, Suranaree University of Technology 30000, Thailand.

Fig. S1 Crystal structure of $Bi_2WO_6(a)$ and $Te-Bi_2WO_6(b)$

Fig. S2 Local structures of Bi_2WO_6 (a) and $Te-Bi_2WO_6$ (b).

Fig. S3 EDS mapping of BWO, 2.5Te-BWO, 5.0Te-BWO, and 7.5Te-BWO

Fig. S4 Te L_3 -edge X-ray absorption near-edge structure (XANES) of BWO, 2.5Te-BWO, 5.0Te-BWO, and 7.5Te-BWO.

Fig. S5 The corresponding TOC removal under visible light after 180 min of BWO, 2.5Te-BWO.

Table S1 Calculated bond distances of pristine and Te-doped Bi_2WO_6 . Their structures areshown in Fig. S2.

Bond	Bond distance (Å)		
	Bi ₂ WO ₆	Te-doped Bi ₂ WO ₆	
W(Te)–O1	1.882	1.895	
W(Te)–O2	1.886	1.898	
W(Te)–O3	1.810	1.909	
W(Te)–O4	1.818	1.918	
W(Te)–O5	2.206	2.129	
W(Te)–O6	2.191	2.115	

Table S2 Bader charge in pristine and Te-doped Bi_2WO_6 . The positive and negative valuesrepresent the depletion and accumulation of electrons, respectively. The correspondingstructures are shown in Fig. S2.

Atom	Bader charge (e)		
	Bi ₂ WO ₆	Te-doped Bi ₂ WO ₆	
W(Te)	+2.62	+2.98	
O1	-1.06	-1.11	
O2	-1.07	-1.11	
03	-0.98	-1.14	
O4	-0.99	-1.14	
O5	-0.98	-1.01	
O6	-0.99	-1.03	

Table S3. List of the band edge potential of various ions doped Bi_2WO_6 and oxygen vacancy with base on experiment.

Sample	Eg (eV)	$E_{VB} vs. NHE (eV)$	$EC_B vs. NHE (eV)$	EN value ¹⁻³	Ref
Bi ₂ WO ₆	2.94	1.84	-0.93		
3%Ti-Bi ₂ WO ₆	2.85	1.99	-1.06	1.54 (Ti)	[4]
Bi ₂ WO ₆	2.71	2.28	-0.33		
10%Ti- Bi ₂ WO ₆	2.84	2.33	-0.41	1.54 (Ti)	[5]
Bi ₂ WO ₆	3.00	2.98	-0.02		
0.26%Fe- Bi ₂ WO ₆	~2.97	2.77	-0.20	1.83 (Fe)	[6]
Bi ₂ WO ₆	2.96	3.18	0.22		
21%Mo- Bi ₂ WO ₆	2.43	2.50	0.05	2.16 (Mo)	[7]
Bi ₂ WO ₆	2.62	3.38	0.76		
4%P- Bi ₂ WO ₆	2.71	3.43	0.72	2.19 (P)	[8]
Bi ₂ WO ₆	2.93	1.60	-1.33		
Bi ₂ WO _{6-x}	2.75	1.28	-1.57	3.44 (O)	[9]

The electronegativities of Bi, W, and O are 2.02, 2.36, and 3.44, respectively¹⁻³

References

- 1 K. Li, D. Xue, J.Phys.Chem. A, 2006, 110 (39), 11332.
- 2 Pauling, L. *The Nature of the Chemical Bond*; Cornell university press Ithaca, NY, 1960.
- 3 Emsley, J. *Nature's building blocks: an AZ guide to the elements*; Oxford University Press, 2011.
- 4 M. Arif, M. Zhang, Y. Mao, Q. Bu, A. Ali, Z. Qin, T. Muhmood, X. Liu, B. Zhou, S.-M. Chen, *J. Colloid. Inter. Sci.*, 2021, **581**, 276.
- 5 M. Arif, M. Zhang, J. Yao, H. Yin, P. Li, I. Hussain, X. Liu, *J. Alloy. Comp.*, 2019, **792**, 878.
- 6 X.-X. Deng, S. Tian, Z.-M. Chai, Z.-J. Bai, Y.-X. Tan, L. Chen, J.-K. Guo, S. Shen, M.-Q. Cai, C.-T. Au, *Ind. Eng. Chem. Res.*, 2020, **59** (30), 13528.
- 7 A. Etogo, R. Liu, J. Ren, L. Qi, C. Zheng, J. Ning, Y. Zhong, Y. Hu, *J. Mater. Chem. A*, 2016, **4** (34), 13242.
- 8 C. Li, G. Chen, J. Sun, J. Rao, Z. Han, Y. Hu, W. Xing, C. Zhang, *Appl. Cat. B: Env.*, 2016, **188**, 39.
- 9 Y. Liu, B. Wei, L. Xu, H. Gao, M. Zhang, *ChemCatChem*, 2015, 7 (24), 4076.