A mechanistic investigation of the Suzuki polycondensation reaction using MS/MS methods

SUPPORTING INFORMATION

Michelle Y. C. Ting, Lars P. E. Yunker, Ian C. Chagunda, Katherine Hatlelid, Meghan Vieweg, J. Scott McIndoe*

Department of Chemistry, University of Victoria, PO Box 1700 STN CSC, Victoria, BC V8W 2Y2, Canada. Fax: +1 (250) 721-7147; Tel: +1 (250) 721-7181; E-mail: <u>mcindoe@uvic.ca</u>

Mass Spectrometry Analysis

Full scan – MS Tuning parameters

The capillary voltage was held at 3 kV, cone voltage at 14 V, extraction cone voltage at 3 V, and RF lens at 0.3 V. The desolvation settings were optimized: desolvation gas flow rate 100 L/h, cone gas flow 200 L/h, source temperature 79°C, desolvation temperature 180°C. Mass range was set to m/z 50 –1800; scan duration was 1 second; LM and HM resolution were set to 12.0 and a total number 4497 scans were collected.

Selected ion recording – MS Tuning parameters

The capillary voltage was held at 3 kV, cone voltage at 14 V, and extraction cone voltage at 3 V and RF lens at 0.3 V. The desolvation settings were optimized: desolvation gas flow rate 300 L/h, cone gas flow 200 L/h, source temperature 79°C, desolvation temperature 175°C. LM and HM resolution were set to 12.0 and a total of 2553 scans were collected. Sixteen channels were set up with 0.1 second dwell time and 2 Da span on each channel.

Neutral loss scan - collision-induced dissociation tuning parameters

Two functions of the neutral loss scan were set up to detect precursor ions with a 262 Da neutral loss of the triphenylphosphine (PPh₃) at two collision-induced dissociation voltages. Function 1 was set up to detect aryl species at low mass range m/z 300-1000 with CID set to 35 V. Function 2 was set up to detect palladium-containing species at high mass range m/z 900-1800 with CID at 15 V. Both functions were set to have 1 second scan time and same collision gas flow 0.22 mL/min.

MS Tuning parameter

The capillary voltage was held at 3.1 kV, cone voltage at 14 V, and extraction cone voltage at 2 V and RF lens at 0.3 V. The desolvation settings were optimized: desolvation gas flow rate 300 L/h, cone gas flow 150 L/h, source temperature 79°C, desolvation temperature 150°C. LM and HM

resolution were set to 13 and a total of 1279 and 1278 scans were collected for Function 1 and Function 2.

Multiple reaction monitoring – MS Tuning parameters

The capillary voltage was held at 3.1 kV, cone voltage at 13 V, and extraction cone voltage at 3 V and RF lens at 0.3 V. The desolvation settings were optimized: desolvation gas flow rate 300 L/h, cone gas flow 200 L/h, source temperature 80°C, desolvation temperature 150°C. LM and HM resolution were set to 13 and a total of 2821 scans were collected. The MRM mass selection data is summarized in Table SI 1.

Product ion scan – CID tuning conditions

All MS/MS spectra were collected using PSI-ESI-MS and the SPC reactions were monitored in full using the same tuning parameters as full scan mode from above. $\mathbf{1}_{0-4}$, $\mathbf{3}_{0-4}$, and $\mathbf{4}_{0-4}$ were studied under CID at 30, 33, and 35 V; $\mathbf{2}_{0-4}$ were studied under CID at 5, 10, 15, 25, and 35 V.

Table SI 1: CID scan	specifications	for aryl	iodide	species	1 ₀₋₄ ,	intermediates	2 ₀₋₄ ,	and	capped	oligomer
products 3_{0-4} and 4_{0-4} .										

Species	Precursor Ion m/z	Fragment <i>m/z</i>	Dwell Time (s)	Collision Energy (V)
10	479	217	0.05	35
11	555	293	0.05	35
12	631	369	0.05	35
13	707	445	0.05	35
14	783	521	0.07	35
20	1108	846	0.05	35
21	1185	922	0.05	15
22	1258	996	0.05	15
23	1339	1077	0.05	15
24	1413	1152	0.05	15
30	429	167		
31	506	244		
32	582	320		
33	658	396		
34	733	471		
40	459	197	0.06	35
41	535	173	0.07	35
42	611	349	0.06	35
43	687	425	0.06	35
44	763	501	0.08	35

Figure SI 1: CID spectra of the aryl iodide species $1_{0.4}$ labelled as the precursor ion. The major fragmented ions were shown in the form of $[H_2CC_6H_4Ar_nI]^+$ and were indicated with an arrow showing the fragment as triphenylphosphine (PPh₃).

Figure SI 2: The CID spectrum of 2_0 showing the fragmentation pattern and Ar⁺ = Ph₃P⁺CH₂C₆H₄.

In Figure SI 2, the CID spectrum of the product ion scan of 2_0 displayed multiple fragments upon CID at 15 V. The most prominent peak at m/z 846 corresponded to the loss of one PPh₃ and was assigned as $[Pd(Ar^+)(PPh_3)(I)]^+$. A weaker signal at m/z 584 was shown to have lost two PPh₃. Product ions involving 262 Da loss are labelled with blue dots. We also observed species that are highlighted with pink dots to indicate that 2_0 has undergone phosphine scrambling pathway. Ions at m/z 643 and m/z 537 were assigned as $[Pd(Ar^+)(PPh_2)]$ and Ar^+PPh_2 , having lost an iodobenzene and a palladium from $[Pd(Ar^+)(PPh_3)(I)]$. We found products that may have arisen from phosphine scrambling and further investigated this phenomenon with 2_{1-3} .

Figure SI 3: The CID spectrum of 2_1 showing the fragmentation pattern and (Ar⁺) = Ph₃P⁺CH₂C₆H₄.

In Figure SI 3, the product ion scan of 2_1 showed a prominent peak at m/z 922 and was assigned to $[Pd(Ar^+)(C_6H_4)(PPh_3)I]$ as it lost a PPh₃ fragment. This signal could either come from the oxidative addition species or transmetallation species as it is isomers of each other (See Scheme SI 1). A weaker signal at m/z 719 was assigned to $[Pd\{(Ar^+C_6H_4)P(Ph_2)\}]$ as it showed a loss of iodobenzene and a further loss of palladium (106 Da) at m/z 613 as $Ar^+(C_6H_4)I$. This observation suggests that m/z 1185 is most likely the oxidative addition species and is consistent with the MS/MS results of 2_0 .

Figure SI 4: The CID spectra of the capped oligomer products $\mathbf{3}_{0-4}$ labelled as the precursor ion. The major fragmented ions were shown in the form of $[H_2CAr_nC_6H_5]^+$ and were indicated with an arrow showing the fragment as triphenylphosphine (PPh₃).

Figure SI 5: The summed ESI mass spectrum for the SPC species 1_n , 2_n , and 4_n (n = 0 - 4) in methanol in the presence of Pd(PPh₃)₄ with the new end-capping reagent MeOC₆H₄B(OH)₂ was added late in the reaction.

To confirm that the 4_n species would undergo the same CID fragmentation pathway as the 1_n and 3_n species losing a PPh₃ ligand from the charged-tag, product ion MS/MS analysis was performed on 4_{0-4} and shown in Figure SI 6.

Figure SI 6: CID spectra of the capped oligomer products $4_{0.4}$ labelled as the precursor ion. The major fragmented ions were shown in the form of $[H_2CAr_nC_6H_5]^+$ and indicated with a dotted arrow showing the fragment as triphenylphosphine (PPh₃).

Figure SI 7: The normalized ESI-MS full scan chronogram of the SPC showing the relative intensity of aryl iodide species label as 1_n , intermediates as 2_n , and the new end-capped oligomer products as 4_n (n = 0 - 4). The aryl charge tag 1_0 , Pd(PPh₃)₄ catalyst, AB monomer p-(OH)₂BC₆H₄I and the end-capping agent MeOC₆H₄B(OH)₂ was added to the reaction solution at 2 minutes, 6 minutes, 16 minutes, and 43 minutes indicated in dotted lines.

Figure SI 8: Photo of pressure sample infusion ESI-MS set-up