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Fig. S2. Optimized bulk alloy models used for lattice parameter analysis 

(a) Ir3Ru1 primitive cell with bader charges (b) Ir48Ru16 supercell (c) 

Ru3Ir1 primitive cell with bader charges (d) Ru48Ir16 supercell. Green and 

orange balls represent the Ir and Ru, respectively. 

Fig. S1. Optimized geometry (a) Ir (111) primitive cell with bader 

charges (b) Ir64 (111) supercell (c) Ru (001) primitive cell with bader 

charges and (d) Ru64 (001) supercell. Green and orange balls represent 

the Ir and Ru, respectively. 
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Fig. S3. Optimized bulk alloy slab models used for surface oxygen  

analysis. O* was adsorbed on three fold hollow hcp site.(a) Ir64 O1(111) 

super cell (b) Ru64O1 (001) supercell (c) Ir48Ru16O1(111) super cell (d) 

Ru48Ir16O1  supercell. Green, orange, and red balls represent the Ir, Ru, and 

oxygen, respectively. 
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Fig. S4. Optimized surface oxygen Ir-slab model with different adsorbates at their stable 

sites. O* was adsorbed on hcp hollow site and most stable site of each adsorbate is mention 

under each figure. Green, red, brown, and violet balls represent the Ir, O, C, and N, 

respectively.  
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Fig. S5. Optimized surface oxygen Ru-slab model with different adsorbates at their stable 

sites. O* was adsorbed on hcp hollow site and most stable site of each adsorbate is mention 

under each figure. Orange, red, brown, and violet balls represent the Ru, O, C, and N, 

respectively. 
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Fig. S6. Optimized surface oxygen Ir3Ru1-slab model with different adsorbates at their stable 

sites.  O* was adsorbed on hcp hollow site and most stable site of each adsorbate is mention under 

each figure. Green, orange, red, brown, and violet balls represent the Ir, Ru, O, C, and N, 

respectively.  
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Fig. S7. Optimized surface oxygen Ru3Ir1-slab model with different adsorbates at their stable 

sites. O* was adsorbed on hcp hollow site and most stable site of each adsorbate is mention under 

each figure. Green, orange, red, brown, and violet balls represent the Ir, Ru, O, C, and N, 

respectively.  
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Fig. S8. Optimized surface oxygen slab models used for dominant effect 

study (a) Ir-Ruligand (b) Ru-Irligand (c) Ir compressive strain (d) Ru tensile 

strain (e) Ir-Ruensemble (f) Ru-Irensemble models. Green, orange, and red balls 

represent the Ir, Ru, and O, respectively. 
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Fig. S10. Reaction energy profile, NO+CO+O2 reactions. T = 150 °C 

and P = 0.1 MPa 

Fig. S9. Reaction energy profile, NO+CO reactions. T = 150 °C and 

P = 0.1 MPa 
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Fig. S11. Reaction energy profile of ligand effect without surface 

oxygen. T = 150 °C and P = 0.1 MPa 

Fig. S12. Reaction energy profile of ligand effect with surface oxygen. 

T = 150 °C and P = 0.1 MPa 
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 Fig. S14. Reaction energy profile of strain effect without surface oxygen. 

T = 150 °C and P = 0.1 MPa 

Fig. S13. Reaction energy profile of ligand effect without surface oxygen. 

T = 200 °C and P = 0.1 MPa  
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Fig. S15. Reaction energy profile of strain effect with surface oxygen. 

T = 150 °C and P = 0.1 MPa  

Fig. S16. Reaction energy profile of strain effect without surface oxygen. 

T = 200 °C and P = 0.1 MPa  
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Fig. S17. Reaction energy profile of dominant effect in an IrRu alloy 

formation without surface oxygen. T = 150 °C and P = 0.1 MPa 

Fig. S18. Reaction energy profile of dominant effect in an IrRu alloy 

formation with surface oxygen. T = 150 °C and P = 0.1 MPa 
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Fig. S19. Reaction energy profile of dominant effect in an IrRu alloy 

formation without surface oxygen. T = 200 °C and P = 0.1 MPa 
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Fig. S21. Mean difference between the median values (Emid) of the pure Ir and 

Ru catalysts and the energy values of the different alloy surfaces with surface 

oxygen. T = 150 °C and P = 0.1 MPa 

Fig. S20. Mean difference between the median values (Emid) of the pure Ir and 

Ru catalysts and the energy values of the different alloy surfaces without 

surface oxygen. T = 150 °C and P = 0.1 MPa 
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Fig. S22. Activation energy (Ea) trends for three important reactions among 

the different catalytic models without surface oxygen for different catalytic 

models. T = 150 °C and P = 0.1 MPa 

Fig. S23. Activation energy (Ea) trends for three important reactions 

among the different catalytic models with surface oxygen for different 

catalytic models. T = 150 °C and P = 0.1 MPa 
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Fig. S24. Optimized geometry and gibbs free formation energy of CO oxidation reaction over Ir, 

Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa. To calculate the formation energy, we 

used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, and brown balls 

represent the Ir, Ru, O, and C, respectively. 
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Fig. S25. Optimized geometry and gibbs free formation energy of N2 formation via N−N 

recombination reaction over Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To 

calculate the formation energy, we used H2O, N2, CH4, and H2 as standard electronic energies. 

Green, orange, and violet balls represent the Ir, Ru, and N, respectively. 
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Fig. S26. Optimized geometry and gibbs free formation energy of N2O decomposition in N2 

formation reaction over Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To 

calculate the formation energy, we used H2O, N2, CH4, and H2 as standard electronic energies. 

Green, orange, red, and violet balls represent the Ir, Ru, O, and N, respectively. 
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Fig. S27. Optimized geometry and gibbs free formation energy of N2O formation reaction over 

Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To calculate the formation energy, 

we used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, and violet balls 

represent the Ir, Ru, O, and N, respectively. 
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Fig. S28. Optimized geometry and gibbs free formation energy of NCO formation reaction over 

Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To calculate the formation energy, 

we used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, brown, and 

violet balls represent the Ir, Ru, O, C, and N, respectively. 
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Fig. S29. Optimized geometry and gibbs free formation energy of NO decomposition reaction 

over Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To calculate the formation 

energy, we used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, and 

violet balls represent the Ir, Ru, O, and N, respectively. 
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Fig. S30. Optimized geometry and gibbs free formation energy of CO decomposition reaction 

over Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To calculate the formation 

energy, we used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, and 

brown balls represent the Ir, Ru, O, and C, respectively. 
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Fig. S31. Optimized geometry and gibbs free formation energy of NO2 formation reaction over 

Ir, Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To calculate the formation energy, 

we used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, and violet balls 

represent the Ir, Ru, O, and N, respectively. 
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Fig. S32. Optimized geometry and gibbs free formation energy of N2 formation reaction over Ir, 

Ru and their alloy surfaces at T = 200 °C and P = 0.1 MPa . To calculate the formation energy, 

we used H2O, N2, CH4, and H2 as standard electronic energies. Green, orange, red, and violet balls 

represent the Ir, Ru, O, and N, respectively. 


