Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Fabrication of Pd/CeO₂ nanocubes as highly efficient catalyst for degradation of formaldehyde at room temperature

Yafeng Chena, Guimin Jiangb, Xiangzhi Cui c,*, Zuotai Zhangb,*, Xinmei Houa,*

^aBeijing Advanced Innovation Center for Materials Genome Engineering, Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, P.R. China

^bSchool of Environmental Science and Engineering and Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen, Southern University of Science and Technology, Shenzhen 518055, P.R. China

^cThe State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China

Physical characterizations

Pulse CO chemisorption: the CO pulse experiments were carried out with an AutoChem II 2920 apparatus equipped with a TCD detector. Firstly, the catalysts were pretreated at 400 °C for 30 min under He (50 mL min⁻¹) with a heating rate of 10 °C min⁻¹ to remove physically adsorbed water and other impurities. Then, after the temperature was cooled to 50 °C, the samples were reduced under a stream of 10% H₂/Ar (50 mL min⁻¹) at 400 °C for 120 min with a heating rate of 10 °C min⁻¹, following by cooling to 45 °C under He (50 mL min⁻¹). When the baseline was stabilized, 10% CO/He was used for CO pulse adsorption. The stoichiometry factor for Pd/CO was assumed to be 1 when calculating the metal dispersion.

Electron spin resonance (ESR) measurement: the electron spin resonance signals were characterized on a Bruker A300 ESR instrument at the X-band frequency with a microwave of 1.0 mW at room temperature.

 H_2 temperature-programmed reduction (H_2 -TPR): the H_2 -TPR measurement were conducted with an AutoChem II 2920 apparatus equipped with a TCD detector. Firstly, the catalysts were pretreated at 400 °C for 30 min under He (50 mL min⁻¹) with a heating rate of 10 °C min⁻¹. Then, a mixture of 10% H_2 /Ar (50 mL min⁻¹) gas was introduced when the samples were cooled to 50 °C. After stabilizing the baseline, the samples were heated to 400 °C at 10 °C min⁻¹.

O₂ temperature-programmed desorption (O₂-TPD): the O₂-TPD measurement were conducted with an AutoChem II 2920 apparatus equipped with a TCD detector. Firstly, the catalysts were pretreated at 400 °C for 30 min under He (50 mL min⁻¹) with a heating rate of 10 °C min⁻¹. After the samples were cooled to 50 °C, a mixture of 3% O₂/He (50 mL min⁻¹) gas was introduced and kept for 60 min. Then, He (50 mL min⁻¹) was injected for 60 min. When the baseline was stabilized, the samples were hearted to 500 °C at 10 °C min⁻¹.

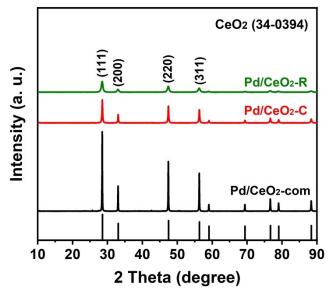


Fig. S1. The XRD patterns of Pd/CeO₂-C, Pd/CeO₂-R and Pd/CeO₂-com catalysts.

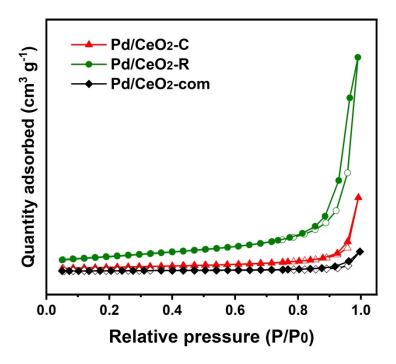


Fig. S2. N_2 adsorption-desorption isotherm plots of Pd/CeO₂-C, Pd/CeO₂-R and Pd/CeO₂-com catalysts.

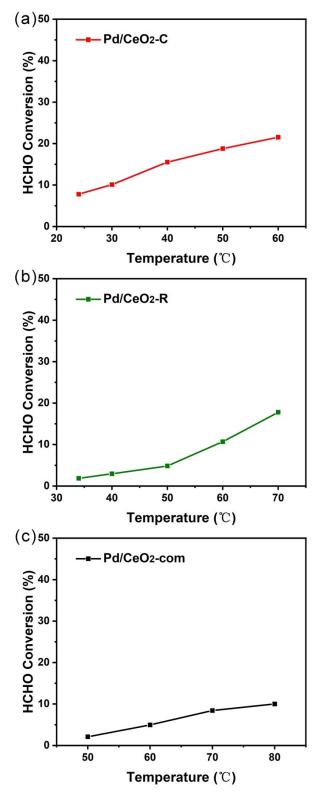


Fig. S3. The kinetic measurement of (a) Pd/CeO₂-R, (b) Pd/CeO₂-R, (c) Pd/CeO₂-com catalysts. The kinetic data were collected at the HCHO conversion below 20% and the reaction rate ($r_{\rm HCHO}$) was calculated by Eq. (4).

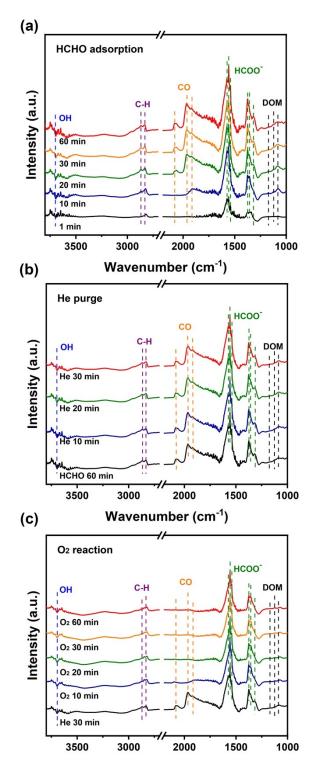


Fig. S4. *In situ* DRIFT spectra (including wavenumber $> 2500 \text{ cm}^{-1}$) of HCHO reaction process on Pd/CeO₂-C catalyst: (a) the adsorption process of HCHO; (b) He purging process; (c) O₂ reaction process.

Table S1. Performance comparison of HCHO oxidation between Pd/CeO₂-C catalyst and published results.

Catalyst	Pd loading (wt.%)	Reaction condition	Conversion (%)	Ref
Pd/TiO ₂	1	120 ppm HCHO, 25 °C	100	[1]
		GHSV=100000 h ⁻¹		[1]
Pd/KTO-NB	1	140 ppm HCHO, 25 °C	100	[2]
		GHSV=20000 h ⁻¹		[2]
Pd/TiO ₂	0.5	100 ppm HCHO, 30 °C	100	[2]
		WHSV=120000 mL g h ⁻¹		[3]
Pd/@TS-1	0.2	100 ppm HCHO, 25 °C	100	[4]
		WHSV=100000 mL g h-1		
Pd/TiO ₂	1	100 ppm HCHO, 25 °C	100	F.6.1
		WHSV=300000 mL g h-1		[5]
Pd/γ-Al ₂ O ₃	0.78	160 ppm HCHO, 25 °C	100	[6]
		WHSV=100000 mL g h ⁻¹		
Pd/TiO ₂	0.2	50 ppm HCHO, 25 °C	100	[7]
		WHSV=24000 mL g h ⁻¹		
Pd/CeO ₂	1	100 ppm HCHO, 30 °C	89	[8]
		WHSV=150000 mL g h ⁻¹		
Pd/CeO ₂	1	100 ppm HCHO, 30 °C	76	[9]
		WHSV=150000 mL g h ⁻¹		
Pd/TiO ₂	1	140 ppm HCHO, 25 °C	100	[10]
		GHSV=95000 h ⁻¹		
Pd/CeO ₂ -C	0.64	200 ppm HCHO, 25 °C	RT	mi: i
		GHSV=36000 mL g h ⁻¹		This work

Reference

- [1] Y. Li, C. Wang, C. Zhang and H. He, Top. Catal., 2020, 63, 810-816.
- [2] L. Zhou, S. He, Y. Sang, X. Zhang, H. Liu, C. Jia and X. Xu, *Catal. Commun.*, 2020, **142**, 106034.
- [3] M. He, Y. Cao, J. Ji, K. Li and H. Huang, J. Catal., 2021, 396, 122-135.
- [4] H. Chen, R. Zhang, H. Wang, W. Bao and Y. Wei, *Appl. Catal. B*, 2020, **278**, 119311.
- [5] C. Wang, Y. Li, C. Zhang, X. Chen, C. Liu, W. Weng, W. Shan and H. He, *Appl. Catal. B*, 2021, 282, 119540.
- [6] N. Xiang, X. Han, Y. Bai, Q. Li, J. Zheng, Y. Li, Y. Hou and Z. Huang, Mol. Catal., 2020, 494, 111112.
- [7] X. Wang, X. Zou, Z. Rui, Y. Wang and H. Ji, AlChE J., 2020, 66.
- [8] K. Li, J. Ji, H. Huang and M. He, Chemosphere, 2020, 246, 125762.
- [9] K. Li, J. Ji, M. He and H. Huang, Catal. Sci. Technol., 2020, 10, 6257-6265.
- [10] Y. Li, C. Zhang, J. Ma, M. Chen, H. Deng and H. He, Appl. Catal. B, 2017, 217, 560-569.