Selective Oxidation of Methane to Methanol on Dispersed Copper on Alumina from Readily Available Copper(II) Formate.

Figure S1: Powder XRD of γ -Al₂O₃ (black), CuO (gray), γ -Al₂O₃ after impregnation of 0.3 wt% Cu (blue) and 3.2 wt% Cu (red)

Figure S2: Powder XRD of γ -Al₂O₃ after specific adsorption of 0.5 wt% Cu (blue), 1.0 wt% Cu (green), 1.5 wt% Cu (orange) and 1.8 wt% Cu (red)

Figure S3: Temperature programmed reduction (TPR) of the incipient wetness impregnation samples after activation at 500 °C under synthetic air

Figure S4: Cu K-edge X-Ray Adsorption Near Edge (XANES) spectroscopy of γ -Al₂O₃ prepared by IWI after calcination at 500 °C

Figure S5: X-band CW-EPR spectra of the IWI (a) and SA (b) samples after activation at 500 °C under synthetic air

Material	loading	Site density	CH_3OH yield	CH₃OH yield	EPR quantification
IWI	wt% Cu	Cu.nm-1	µmol.g⁻¹	mol CH ₃ OH.mol ⁻¹ Cu (%)	Cu ²⁺ reduced (%)
Cu IWI-0.3	0.33	0.1	3.0	5.8	10.8
Cu IMI-1	0.96	0.4	6.8	4.5	15
Cu IWI-1.6	1.64	0.7	11.8	4.6	13.9
Cu IWI-3.2	3.19	1.3	14.4	2.9	11.5
Cu IWI-0.3	0.33	0.1	4.4	8.5	n.d
Cu IWI-1	0.75	0.3	6.9	5.9	n.d
Cu IWI-1.6	1.68	0.7	11.6	4.4	n.d
Cu IWI-3.2	2.89	1.2	14.8	3.2	n.d
SA					
Cu _{SA-0.5}	0.57	0.2	5.2	5.9	16.7
Cu _{SA-1}	1.11	0.5	7.9	4.5	14.5
Cu _{SA-1.5}	1.54	0.6	8.2	3.4	11
Cu _{SA-1.8}	1.78	0.7	21.0	7.5	14.5

Table S1: Reactivity summary for the IWI and SA samples for the partial oxidation of methane to methanol

Figure S6: DRIFT spectra of the incipient wetness impregnation samples after reaction with CH₄ (6 bar, 200 °C, 30 min)

Figure S7: DRIFT spectra of the specific adsorption samples after reaction with CH₄ (6 bar, 200 °C, 30 min)

Figure S8: In situ X-band CW-EPR spectra at 25 °C of the incipient wetness impregnation series before (colored) and after (black) reaction with 6 bar of CH₄ at 200 °C for 30 min. The insert shows a magnification of the parallel transition region and the grey arrows indicate the Cu hyperfine coupling that decrease after reaction with CH₄.

Figure S9: In situ X-band CW-EPR spectra at 25 °C of the specific adsorption series before (colored) and after (black) reaction with 6 bar of CH₄ at 200 °C for 30 min. The insert shows a magnification of the parallel transition region and the grey arrows indicate the Cu hyperfine coupling that decrease after reaction with CH₄.

Figure S10: Resulting difference spectra for the specific adsorption series showing the same spectral signature of the monomeric Cu^{2+} active site in all samples.

Figure S11: X-Band EPR spectrum (-170 °C) for Cu _{IWI-0.3} before and after reaction under 6 bar of CH₄ for 30 min at 200 °C. *The grey arrows indicates the Cu hyperfine coupling that decrease after reaction with CH₄.*

Figure S12: Correlation of the methanol yield in mol% CH₃OH. mol%⁻¹ Cu with the reduced Cu2+species probed by EPR. IWI samples (\blacksquare) and SA samples (\blacktriangle). Grey scale measure for loading with white being the lowest one and black the highest one. The error bar for the reduced Cu²⁺ was determined experimentally by performing the reaction in situ under argon atmosphere with Cu _{IWI-1.6} and calculated to be 3%.