Co-Cr bimetallic oxide derived from layered double hydroxides with high

catalytic performance for chlorinated aromatics oxidation

Wei Deng, Biao Gao, Ziye Jia, Dongqi Liu* and Limin Guo*

School of Environmental Science and Engineering, Huazhong University of Science and

Technology, Wuhan 430074, PR China

*Corresponding author: liudongqi@hust.edu.cn, lmguo@hust.edu.cn

Catalyst	T ₉₀	Rate	Ea	Condition	Ref
	/ °C	/ μ mol min ⁻¹ m ⁻²	kJ/mol		
Ce _{0.5} Ti _{0.5}	375	0.053 at 275 °C	95.7	1000 ppm DCB ^a , GHSV = 30000 mL g ⁻¹ h ⁻¹	1
$3.6\% V_2 O_5/TiO_2$	360	0.084 at 275 °C		500 ppm DCB GHSV = 53000 mL g ⁻¹ h^{-1}	2
Cr _{0.1} Ti _{0.9}	296	0.237 at 275 °C	66.0	1000 ppm DCB GHSV = 30000 mL $g^{-1} h^{-1}$	2
		0.050 at 225 °C			3
0.6Ru/Co ₃ O ₄	303	0.151 at 250 °C		1000 ppm DCB GHSV = 30000 mL $g^{-1} h^{-1}$	4
Co ₉ Mn ₁	347	0.033 at 250 °C	88.3	1000 ppm DCB GHSV = 15000 mL $g^{-1} h^{-1}$	5
FeMn20	400			50 ppm DCB, GHSV = 88,000 mL $g^{-1} h^{-1}$	6
FeCa10	400		21.6	50 ppm DCB, GHSV = 88,000 mL $g^{-1} h^{-1}$	7
Co ₃ Cr	288	0.170 at 250 °C	87.3	1000 ppm DCB GHSV = 60000 mL $g^{-1} h^{-1}$	This work

Table S1 Comparison of rate and Ea with literatures

^a1, 2-dichlorobenzene

References

[1] W. Deng, Q.G. Dai, Y.J. Lao, B.B. Shi, X.Y. Wang, Low temperature catalytic combustion of 1,2-dichlorobenzene over CeO₂-TiO₂ mixed oxide catalysts, Appl. Catal. B: Environ. 181 (2016) 848–861.

[2] C. Gannoun, A. TurKi, H. Kochkar, R. Delaigle, P. Eloy, A. Ghorbel, E.M. Gaigneaux, Elaboration and characterization of sulfated and unsulfated V_2O_5/TiO_2 nanotubes catalysts for chlorobenzene total oxidation, Appl. Catal. B: Environ. 147 (2014) 58–64.

[3] Wei Sun, Binwei Gong, Jun Pan, Yangyang Wang, Hangqi Xia, Hao Zhang, Qiguang Dai, Li Wang, Xingyi Wang, Catalytic combustion of CVOCs over Cr_xTi_{1-x} oxide catalysts, J. Catal., 391 (2020) 132–144

[4] Yijie Lao, Naxin Zhu, Xingxing Jiang, Jian Zhao, Qiguang Dai, Xingyi Wang, Effect of Ru on the activity of Co₃O₄ catalysts for chlorinated aromatics oxidation, Catal. Sci. Technol., 2018,8, 4797-4811

[5] Ting Cai, Hao Huang, Wei Deng, Qiguang Dai, Wei Liu, Xingyi Wang, Catalytic combustion of 1,2dichlorobenzene at low temperature over Mn-modified Co₃O₄ catalysts, Applied Catalysis B: Environmental 166– 167 (2015) 393–405.

[6] Xiaodong Ma, Jiaxin Wen, Haiwei Guo, Gengbo Ren, Facile template fabrication of Fe-Mn mixed oxides with hollow microsphere structure for efficient and stable catalytic oxidation of 1,2-dichlorobenzene, Chemical Engineering Journal 382 (2020) 122940.

[7] Xiaodong Ma, Xi Feng, Jie Guo, Huiqin Cao, Xueyue Suo, Hongwen Sun, Meihua Zheng, Catalytic oxidation of 1,2-dichlorobenzene over Ca-doped FeOx hollow microspheres, Applied Catalysis B: Environmental 147 (2014) 666–676.

Calculation of Rate

Rate at 250 °C based on the converted mole number of 1, 2-dichlorobenzene per minutes per square shown in Table 2 and S1. Reaction condition: feed, 100 mL min⁻¹; 1000 ppm 1, 2-dichlorobenzene, 10 vol. % O_2 and N_2 in balance; catalyst: 100 mg

For example

For Co₃O₄:

DCB conversion at 250 °C: 5.3%, S_{BET}: 30 m²/g

Characterization of Co₃Cr mixed oxides synthesized by different methods and their performance for 1, 2-dichlorobenzene combustion:

Fig. S1 The activity test for 1, 2-dichlorobenzene combution (A), the XRD pattern (B) and the H₂-TPR profiles (C) of CoCr mixed oxides with Co/Cr=3 (mole) synthesized by different methods. Gas composition: 1000 ppm 1, 2-dichlorobenzene, 10 vol. % O₂ and N₂ balance; GHSV: 60,000 mL g⁻¹ ·h⁻¹; catalyst amount: 100 mg.

Methods: The Co₃Cr was synthesized by a hydrotalcite derived methods as discripted in the present paper. The Co₃Cr-cp was synthesized by a co-precipation method using ammonium hydroxide (NH₄OH) as the precipitator and the final pH was maintained at about 9.0. The Co₃Cr-sg was prepared from a sol-gel method using using citric acid as a chelating agent. The Co₃Cr-pm was just abtained from the calcination of their pysical mixtures, before calcination, the metal nitrate precursors mixed through a grinding process with grinding duration of 5 min. All the prepared samples was calcinated at 400 °C for 4h with the same ramping rate of 2 °C per minute.

Results and Discussion: The activity test for combustion of 1, 2-dichlorobenzene with 1000 ppm in the flow gas under GHSV=60000 mL g⁻¹ ·h⁻¹ illustrated that CoCr mixed oxides synthesized from different methods showed a high activity, of which, T₉₀ (temperature for 90% conversion) could be abtained before 400 °C, indicating that the CoCr mixed oxide itself was an active catalyst for 1, 2-dichlorobenzene combustion. However, the apparant activity of each catalyst was quite different, among them, the Co₃Cr showed a highest activity with T₉₀ of 288 °C, which was higher or comparable to Ru/Co₃O₄ with high efficient for 1, 2-dichlorobenzene abatement [Table S1, Ref. 4]. The different performance of each catalyst for 1, 2-dichlorobenzene combustion might be ascribed for the existence of metal oxides (Fig. 1S B , pure spinel phase for Co₃Cr and Co₃Cr-cp, coexistence of Co₃O₄ and Cr₂O₃ for Co₃Cr-sg and Co₃Cr-pm), different specific surface area (Fig. 1S B) and different redox properties (Fig. 1S C)

Fig. S2 Effect of gas flow on 1, 2-dichlorobenzene oxidation over Co₅Cr (A); gas composition: 10 vol. % O₂ and N₂ balance; 1, 2-dichlorobenzene liquid flow: 30 μ L h⁻¹; GHSV: 60,000 mL g⁻¹ · h⁻¹; gas flow: 25-100 mL min⁻¹. Effect of particle size of Co₅Cr catalyst on 1, 2-dichlorobenzene oxidation (B); gas composition: 1000 ppm 1, 2-dichlorobenzene, 10 vol. % O₂ and N₂ balance; GHSV: 60,000 mL g⁻¹ h⁻¹; catalyst amount: 100 mg.

Discussion: As shown in Fig. S2A, changing the gas flow rate from 50 mL min⁻¹ to 100 mL min⁻¹, the conversion of 1, 2-dichlorobenzene was kept essentially the same, meaning that there was no external mass transfer resistance for 1, 2-dichlorobenzene oxidation. However, when the flow rate lower to 25 mL min⁻¹, indicating that the external mass transfer had a negative impact on 1, 2-dichlorobenzene oxidation, especially for the high temperature range. Similarly, changing the particle size from 20-80 mesh, the conversion of 1, 2-dichlorobenzene changed a little, meaning that the internal diffusion resistance could be eliminated. Totally, the given conditions for 1, 2-dichlorobenzene oxidation and external mass transfer resistances.

Fig. S3 XRD patterns of as-synthesized precursors

Discussion: The XRD patterns of synthesized precursors were shown in Fig. S3. The patterns presented some different characteristics with the variation of Co/Cr ratio. The Co-p showed the coexistence of α -Co(OH)₂ (JCPDS 51-1731) with brucite-like structure and β -Co(OH)₂ (JCPDS 74-1057) under high basicity [Z.P. Xu and H.C. Zeng, Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds, *Chem. Mater.*, 1999, **11**, 67-74]. With the addition of Cr, the Co_xCr-p (x=1~5) showed a typical LDHs structure, but the intensity of the peaks changed with the variation of Co/Cr ratio. As reported, pure hydrotalcite phase generally could be obtained in a narrow range of [M³⁺]/([M³⁺]+[M²⁺] between 0.2~0.33. Otherwise, side products could be formed [X. D and D.G. Evans, Layered Double Hydroxides, 2006, **119**]. However, it was undeniable that even the Co/Cr ratio varied from 1 to 5 (the corresponding [Cr³⁺]/([Cr³⁺]+[Co²⁺]) was 0.16~0.5), no other peaks were detected, indicating that the extra Co or Cr species presented amorphous structure or poor crystalline. The characteristic diffractions of Cr-p showed amorphous.

Fig. S4 XRD pattern of as-synthesized CrO_x

Fig. S5 N₂ sorption isotherms (A), pore size distributions (B) for fresh catalysts and N₂ sorption isotherms (C) for used catalysts

Fig. S6 The SEM images and elemental mappings of as-prepared samples: (A) Co₅Cr, (B) Co₃Cr and (C) CoCr.

Fig. S7 Surface ratio of Co/Cr as a function of bulk composition of Co-Cr mixed oxides.

Fig. S8 The CO₂ to CO_x (CO₂+CO) and selectivity of Cl₂ on cobalt based catalysts. Gas composition: 1000 ppm 1, 2-dichlorobenzene, 10 vol. % O₂ and N₂ balance; GHSV: 60,000 mL g⁻¹ \cdot h⁻¹; catalyst amount: 100 mg.

Fig. S9 Temperature-programmed surface oxidation reaction curves (TPSR) of 1, 2dichlorobenzene (*o*-DCB) combustion over Co_3O_4 (A), Co_5Cr (B) and Co_2Cr (C); Gas composition: 1000 ppm, 1, 2-dichlorobenzene (*o*-DCB), 10 vol. % O₂ and Ar balance; GHSV = 30,000 mL g⁻¹ h⁻¹; catalyst amount: 100 mg.

Fig. S10 Recycling experiments for 1, 2-dichlorobenzene oxidation and 1, 2, 4trichlorobenzene selectivity over as-prepared catalysts. Gas composition: 1000 ppm 1, 2-dichlorobenzene, 10 vol. % O₂ and N₂ balance; GHSV: 60,000 mL $g^{-1} \cdot h^{-1}$; catalyst amount: 100 mg.

Fig. S11 The XRD patterns of used catalysts after recycling tests.

Fig. S12 The Raman spectra for used catalysts after recycling tests.

Fig. S13 O_2 -TPO-MS profiles for CO_2 and CO of the used Co_3O_4 , Co_3Cr and CoCr catalysts after stability test.

Fig. S14 The H₂-TPR profiles of fresh and used catalysts.

Fig. S15 The total H₂ consumption for fresh and used catalysts.

Fig. S16 Surface Co/Cr ratio relevant to their bulk ratio for fresh and used catalysts

Fig. S17 XPS spectra of Co 2p, Cr 2p, O 1s and Cl 2p for used samples.

Fig. S18 Catalytic combustion of benzene (A), chlorobenzene (B) and T_{90} for benzene/Chlorobenzene/1, 2-dichlorobenzene oxidation versus total H₂ consumption (C) over cobalt based catalysts, Reaction rate at designated temperature for aromatics oxidation and TOF(Cr) for 1, 2-dichlorobenzene oxidation at 250 °C versus total H₂ consumption (D). Conditions: 1000 ppm VOCs, 10 vol. % O₂ and N₂ balance; GHSV = 60000 mL g⁻¹ h⁻¹.

Discussion: The light off curves for aromatics oxidation, the T₉₀ for aromatics oxidation, reaction rate at designated temperature and TOF_(Cr) (the value based on the rate per square meter normalized by Cr% on surface obtained from XPS data) at 250 °C for 1, 2-dichlorobenzene versus total H₂ consumption was also presented in Fig. S18. The T₉₀ for chlorinated aromatics showed no obvious association to total H₂ consumption confirmed that the reducibility of the cobalt based catalysts was not the only one factor for the apparent activity. The Rate₂₀₀ for benzene oxidation showed a positive correlation with the total H₂ consumption, indicating that the oxidation of benzene was more depended on the reducibility of the catalysts (Fig. S18D). However, for the chlorinated aromatics combustion, the Rate₂₂₀ or Rate₂₅₀ showed a distinct tendency. Fig. S18D also showed TOF_(Cr) at 250 °C as a function of H₂ consumption over Co/Cr=2-5, the TOF_(Cr) increased with the raise of Co/Cr ratio, meaning that Co₃O₄ species with high reducibility showed high activity for 1, 2-dichlorobenzene oxidation.

Fig. S19 The effect of water on 1, 2-dichlorobenzene catalytic combustion over synthesized catalysts (A: Co₃O₄, B: Co₅Cr, C: Co₄Cr, D: Co₃Cr, E: Co₂Cr, F: CoCr); Gas composition: 1, 2-dichlorobenzene 1000 ppm+ 3 vol. % water (only using for wet condition); 10 vol. % O₂ and N₂ balance; GHSV = 60000 mL g⁻¹ h⁻¹.