Supporting Information

Efficient Photodegradation of 2-Chloro-4-Nitrophenol over Fe-Doped BiOCl Nanosheets with Oxygen Vacancy

Haoyuan Wu,¹ Xiangming Liu,² Hua Xu,²,* Xinmin Yang,¹ and Jinhua Ye¹,3,*

¹TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, P.R. China;
²School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, P.R. China;
³International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan.

Corresponding email: XU.Hua@wit.edu.cn, Jinhua.YE@nims.go.jp
Figure S1 (a) TEM image, (b) HRTEM image and FFT pattern (inset) of BOC.

Figure S2 EPR spectra of Fe-BOC and Fe$^{3+}$ standard sample.

Figure S3 XRD patterns of Fe-doped BiOCl with various concentration of Fe.
Figure S4 UV-visible diffuse reflectance spectra of Fe-doped BiOCl with various concentration of Fe.

Figure S5 EPR spectra to detect the concentration of oxygen vacancy in BiOCl and Fe-doped BiOCl with various concentration of Fe.

Figure S6 Corresponding kinetic curves of prepared BOC and Fe-BOC.
Figure S7 Cycle test for 2-C-4-NP photodegradation of Fe-BOC in 60 min.

The percentage of the 2-chloro-4-nitrophenol photodegraded were tested to be 81%, 71%, 69%, 65%, and 62% after each cycle in 60 min.

Figure S8 TOC removal efficiency of the BOC and Fe-BOC.

The total organic carbon (TOC) removal efficiencies were 15.5% and 23.9% for BOC and Fe-BOC in 60 min, respectively. After 3 h, the TOC removal efficiency could reach to 55.5% for Fe-BOC.
Figure S9 2-C-4-NP photodegradation activity of BiOCl and Fe-doped BiOCl with various concentration of Fe.

Figure S10 Adsorption curves of 2-C-4-NP over BOC and Fe-BOC.

The amounts of adsorbed 2-C-4-NP were detected to be 6.68 and 6.99 nmol/mg for BOC and Fe-BOC, respectively.

Figure S11 Absorption spectra of DPD/POD-H$_2$O$_2$ over BiOCl and other Fe-doped BiOCl samples.
Figure S12 CV curves of prepared BOC and Fe-BOC within and without simulated light irradiation.

Figure S13 Intermediate products detected by GC-MS with TMCS-HDMS derivatization.