Supporting Information

Metal-organic framework derived carbon supported Cu-In bimetallic nanoparticles for highly selective CO₂ electroreduction to CO

Xia Ma^{a,b}, Jianjian Tian^{a,b}, Min Wang^{a,b}, Xixiong Jin^{a,b}, Meng Shen^{a,b}, Lingxia Zhang^{*a,b, c}

^a State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road, Shanghai, 200050, P. R. China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China

^c School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study,

University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China

*Corresponding	author.	E-mail:	zhlingxia@mail.sic.ac.cn
Concepting	uutiitti.	L'illull.	ZinnigAlu@inun.sie.ue.en

Fig. S1 LSV curves (a) and products selectivity on $Cu_{10}In_{90}/C$ (b) and $Cu_{50}In_{50}/C$ (c). Faradaic efficiency of CO on Cu_xIn_{100-x}/C (d).

Fig. S2 Current density of CO (a) and H_2 (b) at -0.6 V ~ -1.0 V, and Faradaic efficiency of CO (c) and H_2 (d) at the potential of -0.75 V on Cu/C, In/C and $Cu_{90}In_{10}/C$ catalysts.

Fig. S3 The stability of $Cu_{90}In_{10}/C$ at -0.75 V.

Fig. S4 XRD patterns of $Cu_x In_{100-x} MOFs$ (a) and $Cu_x In_{100-x}/C$ (b).

Fig. S5 SEM and TEM images of Cu/C (a, b) and In/C (c, d).

Fig. S6 SEM images of $\mathrm{Cu_{10}In_{90}/C}$ (a) and $\mathrm{Cu_{50}In_{50}/C}$ (b).

Fig. S7 The Cu 2p XPS spectra on the surface and subsurface of $Cu_{90}In_{10}/C$ (a) and Cu/C (b), the comparison of Cu $2p_{3/2}$ peaks of $Cu_{90}In_{10}/C$ and Cu/C.

Fig. S8 In 3d (a) and Cu 2p (b) XPS spectra of $Cu_{10}In_{90}/C$ and $Cu_{50}In_{50}/C$.

Fig. S9 N_2 adsorption isotherms (a) and pore size distributions (b) of $Cu_x In_{100-x}/C$.

Fig. S10 CV curves of $Cu_x In_{100-x}/C$ obtained at various scan rates (a-e), charging current density differences plotted against scan rates of $Cu_{10}In_{90}/C$ and $Cu_{50}In_{50}/C$ (f).

Fig. S11 Tafel plots for CO (a), and Nyquist plots (b) of $Cu_{10}In_{90}/C$ and $Cu_{50}In_{50}/C$.

Elements	At (%)	
Cu	1.03	
In	0.093	
Cu/In	11.07	

Table S1. The atom ratio of $Cu_{90}In_{10}/C$ measured by ICP-OES.

Catalyst	Flectrolyte	Maximum FE _{co}	Potential (V vs. RHE)/
	Electionyte	(%)	J (mA cm ⁻²)
Cu ₉₀ In ₁₀ /C (this work)	0.1 M KHCO ₃	95	-0.75/-2.3
C-Cu(OH) ₂ @ZIF-8-10%-1000 ¹	0.5 M KHCO ₃	90	-0.5/~ -5
CoPc-Cu-O ²	0.1 M KHCO ₃	85	-0.74/-13.2
Cu-NC400 ³	0.1 M KHCO ₃	~ 23	-0.7/~ -2
Cu-MOF-74 derived Cu NPs ⁴	0.1 M KHCO ₃	~ 5	-1.1/~ -3
Fe _{0.07} Cu–N–C ₈₀₀ ⁵		47.8	-1.2 (V vs. Ag/AgCl) /~ -18
Cu–N–C ₁₁₀₀ ⁶	0.1 M KHCO ₃	40.8	-0.6/~ -0.4
Cu ₂ O@Cu-MOF ⁷	0.1 M KHCO ₃	23.1	-0.91/~ -2.5
MOFs-drived Cu/Cu ₂ O ⁸	0.5 M KHCO ₃	43.8	-0.76/~ -22.5
Cu-N-C ⁹	0.5 M KHCO ₃	~ 23	-0.55/~ -2
MOFs-derived Cu _x O/C ¹⁰	0.1 M KHCO ₃	~ 22.2	-0.78/

Table S2. Comparison of FE_{CO} on $Cu_{90}In_{10}/C$ with other reported Cu-based MOFs catalysts.

References

- 1. X. Chen, L. Ma, W. Su, L. Ding, H. Zhu and H. Yang, *Electrochim. Acta*, 2020, **331**, 135273.
- 2. Z. Meng, J. Luo, W. Li and K. A. Mirica, J. Am. Chem. Soc., 2020, **142**, 21656-21669.
- Y. Cheng, X. Chu, M. Ling, N. Li, K. Wu, F. Wu, H. Li, G. Yuan and X. Wei, *Catal. Sci. Technol.*, 2019, 9, 5668-5675.
- 4. M. K. Kim, H. J. Kim, H. Lim, Y. Kwon and H. M. Jeong, *Electrochim. Acta*, 2019, **306**, 28-34.
- S. Cao, H. Chen, M. Liu, B. Feng, B. Dong, Q. Zheng, W. Liu and Y. Teng, J. CO₂ Util., 2021, 44, 101418.
- S. Cao, H. Chen, B. Dong, Q. Zheng, Y. Ding, M. Liu, S. Qian, Y. Teng, Z. Li and W. Liu, J. Energy Chem., 2021, 54, 555-563.
- X. Tan, C. Yu, C. Zhao, H. Huang, X. Yao, X. Han, W. Guo, S. Cui, H. Huang and J. Qiu, ACS Appl. Mater. Interfaces, 2019, 11, 9904-9910.
- J. Liu, L. Peng, Y. Zhou, L. Lv, J. Fu, J. Lin, D. Guay and J. L. Qiao, ACS Sustain. Chem. Eng., 2019, 7, 15739-15746.
- 9. L. Jiao, W. J. Yang, G. Wan, R. Zhang, X. S. Zheng, H. Zhou, S. H. Yu and H. L. Jiang, *Angew. Chem., Int. Ed.*, 2020, **59**, 20589-20595.
- K. Yao, Y. Xia, J. Li, N. Wang, J. Han, C. Gao, M. Han, G. Shen, Y. Liu, A. Seifitokaldani, X. Sun and H. Liang, *J. Mater. Chem. A*, 2020, **8**, 11117-11123.