Supporting Information

Particle Size-Controlled Synthesis of High-Performance MnCo-based Materials for Alkaline OER at Fluctuating Potentials

Cornelia Broicher^{*†‡*}, Malte Klingenhof^{*††‡*}, Marvin Frisch^{*††*}, Sören Dresp^{*††*}, Nikolas Mao Kubo^{*†*}, Jens Artz^{*†*}, Jörg Radnik^{*†††*}, Stefan Palkovits^{*†*}, Anna Katharina Beine^{*†††††*</sub>, Peter Strasser^{*††*} and Regina Palkovits^{*†*,*†††††*}}

 ‡ The authors contributed equally.

[†] Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.

^{††} Department of Chemistry, Chemical and Materials Engineering Division, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany.

^{†††} Bundesanstalt für Materialforschung und -prüfung, BAM, Unter den Eichen 44-46, 12203 Berlin, Germany.

^{††††} Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany.

Corresponding Authors

palkovits@itmc.rwth-aachen.de pstrasser@tu-berlin.de katharina.beine@cec.mpg.de

Table of Contents

- 1. Experimental Procedures
- 2. Characterization of the Electrode Materials
- 2.1. SEM images of MnCo-pH3, MnCo-pH5.5 und MnCo-pH7
- 2.2. N₂-Physisorption
- 2.3. Powder XRD and Rietveld refinement
- 2.4. XPS
- 3. Electrochemical characterization of the Electrode Materials
- 3.1. Comparison of MnCo-pH7 to IrO₂ and RuO₂ in linear sweep voltammetry
- 3.2. Double layer capacitance *c*_{DL} in 1.0 M KOH
- 3.3. Calculation of the electrochemical surface area ECSA
- 3.4. Calculation of the Turnover Frequency *TOF* for Cubic MnCo-Materials
- 3.5. Tafel and Nyquist plots for Cubic MnCo-Materials
- 3.6. Polarisation curves of the full-cell measurement of MnCo-materials
- 4. Characterisation of the spent MnCo-pH7 catalyst
- 4.1. XPS Analysis

1. Experimental Procedures

Figure S1: a, b) Depiction of the electrolyser setup, including electrolyte reservoirs and pump. c, d) Detailed view of the used electrolysis cell. e, f) cell components and PTL preparation.

 Table S1: Protocol applied for the full cell measurements.

WE testing
CV: 50 cycles, 1.1 V – 1.7 V. 50 mV s ⁻¹
CA: 1.83 V, 1 h
Loop:
MP: 1.3 V – 2.2 V, 100 mV potential steps, 180 sec each, average over the last 20 sec.
PEIS: 1.6 V
Loop: Technique 3, two times

2. Characterization of the Electrode Materials

2.1 SEM images of MnCo-pH3, MnCo-pH5.5 und MnCo-pH7

Figure S2: SEM images of MnCo-pH3, MnCo-pH5,5 und MnCo-pH7. (a, e, i) overview images, 50x magnification, (b, f, j) particle size distribution at 10 kV, 1000x magnification 10 μm, (c, g, k) 10 kV, 10,000x magnification 1 μm, (d, h, l) 10 kV, 200000x magnification 0.1 μm.

2.2 N₂-Physisorption

Figure S3: a) N₂-physisorption isotherms and b) corresponding pore size distributions of the synthesised MnCo-materials at different pH values.

2.3 Powder XRD and Rietveld refinement

Figure S4: Powder XRD patterns and corresponding Rietveld refinements of the synthesised MnCo-materials at different pH values and the reference sample consisting of 100 % MnCo₂O₄ spinel phase.

Figure S5: a) XPS survey spectra and b-f) element spectra for the MnCo-materials synthesised at pH 3, 5.5 and 7 (b) O 1s, c) Mn 2p, d) Mn 3s, e) Co 2p and f) C1s). The XPS spectra were referenced to C 1s with a binding energy of 285.0 eV.

- 3. Electrochemical characterization of the Electrode Materials
- 3.1 Comparison of MnCo-pH7 to IrO₂ and RuO₂ in linear sweep voltammetry

Figure S6: Activity plot: current density vs. potential (vs. RHE) for MnCo-pH7 compared to IrO2 and RuO2.

3.2 Double layer capacitance *c_{DL}* in 1.0 M KOH

Figure S7: Double layer capacitance *c*_{DL} measurements for the determination of the electrochemical surface area *ECSA*.

3.3. Calculation of the electrochemical surface area ECSA

$$ECSA = r_F \cdot S_g \tag{S1}$$

$$r_F = \frac{c_{DL}}{c_s} \tag{S2}$$

ECSA electrochemical surface area [cm²]

r_F roughness factor [-]

- S_g geometric surface area of the working electrode [cm²] in our case: 0.1396 cm²
- c_{DL} double layer capacitance [mF·cm⁻²]
- c_s specific capacitance [mF·cm⁻²]

0.04 F·cm⁻² were used as typically observed for aqueous NaOH solutions

3.4 Calculation of the Turnover Frequency TOF for Cubic MnCo-Materials

The TOF calculation usually serves as an activity descriptor for an electrocatalyst. In general, the *TOF* is defined as the number of moles of reactant consumed $n(substrate)_0 - n(substrate)_t$ divided by mole of catalyst n(cat) per time of reaction t (see eq. S3).

$$TOF = \frac{n(substrate)_0 - n(substrate)_t}{n(cat) \cdot t}$$
(S3)

$$TOF(OER) = \frac{n(O_2)}{n(active metal centers)}$$
(S4)

As given in eq. S4, in the case of the OER, the amount of formed oxygen $n(O_2)$ as well as the fraction of active metal centres at the surface have to be determined. $n(O_2)$ can be calculated as follows: The obtained current density j of the LSV polarization measurement is multiplied using the Avogadro constant ($N_A = 6.023 \cdot 10^{23}$ molecules O_2) and divided by the number of transferred electrons per O_2 molecule times the Faraday constant (F = 96485.3 C; 1 C = 1000 mAs) (eq. S5).

$$n(O_2) = \frac{j \cdot N_A}{4 \cdot F} \tag{S5}$$

$$n(O_2) = 10 \ \frac{mA}{cm^2} \ x \ \frac{1}{1000 \ mA} \ x \ \frac{1}{1A} \ x \ \frac{1}{96453.8 \ C} \ x \ \frac{1}{4 \ mol \ e^-} \ x \ \frac{1}{4 \ mol \ e^-} \ x \ \frac{6.023 \ * \ 10^{23} \ molecul \ O_2}{1 \ mol \ O_2}$$

$$= 10 \frac{mA}{cm^2} x \frac{6.023 \times 10^{23}}{4 \mod \times 1000 \ mA \times 96453.8 \ C} = 1.56 \times 10^{16} \ molecules \ O_2$$

The herein presented approach relies on a geometric model for the calculation of the *TOF* at a certain overpotential η . The approach assumes that all surface atoms of the catalytically active phase are active centres. The calculated roughness factors R_f were used for the calculation of the TOF. The loading of the catalyst on the working electrode amounts to 0.000394 g·cm⁻². The effective electrode area for the measurements amounts to 0.1396 cm².

For MnCo-5.5, a composition of 17.4 % CoCO₃, 43.7 % (Mn/Co)CO₃ and 38.9 % MnCo₂O₄ was determined *via* Rietveld analysis. Accordingly, an average molar mass of 163.89 g·mol⁻¹ results. The fraction of total Co atoms amounts to 39.0 % of the material. Hence, the total number of Co atoms is 7.88 \cdot 10¹⁶ atoms per electrode area:

$$0.39 \cdot \frac{0.000055 \frac{g}{0.1396 \ cm^2}}{163.69 \frac{g}{mol}} \cdot 6.023 \cdot 10^{23} \frac{1}{mol} = 7.88 \cdot 10^{16} \frac{Co \ atoms}{0.1396 \ cm^2}$$

The average edge length was determined to be 3.2 μ m for MnCo-5.5. A density of 3.6 g·cm⁻³ for the synthesised MnCo materials was obtained using a pycnometer. Considering the density of the material and the average edge length of the cubes, a mass of $1.18 \cdot 10^{-10}$ g per cube can be calculated. This corresponds to a number of $4.33 \cdot 10^{11}$ atoms per cube.

Using a density of 3.6 g·cm⁻³, a volume density of $1.32 \cdot 10^{22}$ atoms·cm⁻³ can be calculated. From this volume density, a density of $5.59 \cdot 10^{14}$ atoms·cm⁻² results. Accordingly, a surface-to-volume ratio of $7.93 \cdot 10^{-4}$ can be determined:

$$\frac{6 \cdot 5.59 \cdot 10^{14} \frac{atoms}{cm^2} \cdot (3.2 \cdot 10^{-4} cm)^2}{1.32 \cdot 10^{22} \frac{atoms}{cm^3} \cdot (3.2 \cdot 10^{-4} cm)^3} = 7.93 \cdot 10^{-4}$$

By taking XPS results into account (24.3 at.-% Co), a number of $8.35 \cdot 10^7$ surface Co atoms per cube can be calculated.

An average edge length of $3.2 \,\mu$ m implies a number of $4.66 \cdot 10^5$ cubes per electrode area. The total number of surface Co atoms per electrode area thus amounts to $3.89 \cdot 10^{13}$. This number can now be compared to the total number of Co atoms per electrode area. Roughly every 5190^{th} Co atom can be treated as exposed at the surface of the cubes and is thus considered for the calculation of the corresponding *TOF* values :

TOF @ 1.6 V vs. RHE (MnCo-5.5) =
$$\frac{\frac{5.4 \text{ mA cm}^{-2}}{10 \text{ mA cm}^{-2}} \cdot 1.56 \cdot 10^{16} \text{ molecules } O_2}{3.89 \times 10^{13} \text{ surface Co atoms} \cdot 32} = 6.8 \text{ s}^{-1}$$

3.5 Tafel and Nyquist plots for Cubic MnCo-Materials

Figure S8: a) Tafel plots (η vs. log(*j*)) (conditions: scan rate 10 mV/s, 1600 rpm, 1 M KOH), b) Nyquist plots in a frequency range between 0.05 Hz to 100 kHz obtained from electrochemical impedance measurements (conditions: scan rate 10 mV/s, 1600 rpm, 1 M KOH at 0.6 V vs. *RHE*) and c) equivalent circuit diagram (dual constant equivalent circuit, where: R_s = solution resistance, *CPE* = constant phase element related to layer capacitance, R_{CT} = charge transfer resistance, C_p / R_p = capacitance and resistance related to oxygen adsorption).

3.6 Polarisation curves of the full-cell measurement of MnCo-materials

Figure S9: Polarisation curves for synthesised electrocatalysts.

4. Characterisation of the spent MnCo-pH7 catalyst

4.1. XPS Analysis

Figure S10: XPS survey spectrum of MnCo-pH7 after OER testing in an electrolyser setup using 1.0 M KOH as electrolyte at 333 K. The XPS spectra were referenced to C 1s with a binding energy of 285.0 eV.

Table S2: Summary of the elements present at the electrode surface after electrochemical test in an electrolyser setup applying 1.0 M KOH as electrolyte.

Peak name	E _B [eV]	Quantity [at.%]
Co 2p	780	3.98
Mn 2p	642	0.71
F 1s	690	40.51
O 1s	530	22
C 1s	285	27.03
К 2р	292	5.77

Figure S11: XPS element spectra of a) Mn 2p, b) Co 2p and c) O 1s. The XPS spectra were referenced to C 1s with a binding energy of 285.0 eV.