## Electronic Supplementary Information (ESI) for:

## Covalent graphite modification by low-temperature photocatalytic oxidation

## using titanium dioxide thin film prepared by atomic layer deposition

Niels R. Ostyn,<sup>a</sup> Sreeprasanth Pulinthanathu Sree,<sup>a</sup> Jin Li,<sup>b</sup> Ji-Yu Feng,<sup>b</sup> Maarten B. J. Roeffaers,<sup>c</sup> Steven De Feyter,<sup>d</sup> Jolien Dendooven,<sup>b</sup> Christophe Detavernier <sup>b</sup> and Johan A. Martens <sup>a,\*</sup>

<sup>a</sup> Centre for Surface Chemistry and Catalysis: Characterization and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Heverlee, Belgium

<sup>b</sup> Conformal Coating of Nanostructures (CoCooN), Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent, Belgium

<sup>c</sup> Centre for Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, box 2461, B-3001 Heverlee, Belgium

<sup>d</sup> Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium



**Fig. S1.** XRD patterns of annealed TiO<sub>2</sub> thin film prepared by ALD (in blue) and reference anatase TiO<sub>2</sub> powder ( $\geq$  99.0 wt%, CristalACTIV<sup>TM</sup> PC-500) (in black). A 15 nm TiO<sub>2</sub> film was deposited on a Si(100) substrate using the TDMAT/H<sub>2</sub>O ALD process (200 cycles) described in the manuscript. Annealing of the ALD TiO<sub>2</sub> film was performed in air at 550 °C for 3 h (heating rate of 1 °C/min). The crystallographic composition of the annealed thin film is compared with reference anatase TiO<sub>2</sub> particles. All XRD data were normalized and background subtracted.

 Table S1
 H<sub>2</sub>O vapor concentrations used in reactor gas mixture by heating a water saturator to different temperatures

| Saturator temperature [°C] | H <sub>2</sub> O vapor concentration [vol%] |
|----------------------------|---------------------------------------------|
| 21                         | 1.8                                         |
| 35                         | 4.2                                         |
| 40                         | 5.5                                         |
| 45                         | 7.3                                         |
| 50                         | 9.6                                         |



**Fig. S2** HRSEM images of ALD TiO<sub>2</sub> films subjected to 50 deposition cycles (2.9 nm thickness) and 400 deposition cycles (22.5 nm thickness), coated on a quartz glass support plate, and powder TiO<sub>2</sub> layers. (a) 50-Cycled amorphous ALD TiO<sub>2</sub> film. (b) 50-Cycled anatase ALD TiO<sub>2</sub> film after calcination in air at 600 °C for 5 h (heating at 1 °C min<sup>-1</sup>). (c and d) 400-Cycled anatase ALD TiO<sub>2</sub> film after identical calcination treatment. The micrographs show little presence of surface cracks and discontinuities in the conformal TiO<sub>2</sub> thin films. Increased surface roughness upon calcination and transformation to the crystalline phase is attributed to local sintering of small TiO<sub>2</sub> particles due to the high-temperature treatment. (e and f) Powder anatase TiO<sub>2</sub> layers deposited on support plate from TiO<sub>2</sub>-isopropanol suspension.



**Fig. S3** HRSEM images of natural graphite photocatalytically oxidized in contact mode (front UV irradiation) under 30 vol%  $O_2$  and 1.8 vol%  $H_2O$  vapor for 96 h at 140 °C. The graphite surface areas in closest contact with TiO<sub>2</sub> are more oxidized than the basal planes.



Fig. S4 Raman spectra measured at 5 random locations on the POG product surface following remote oxidation in 70 vol% O2 and 4.2 vol% H2O vapor for 96 h at 70 °C. (a) Photo-oxidation using TiO<sub>2</sub> powder photocatalyst and (b) photo-oxidation using ALD TiO<sub>2</sub> thin film photocatalyst (22.5 nm thick).

| H <sub>2</sub> O vapor concentration [vol%] | D band FWHM [cm <sup>-1</sup> ] | G band FWHM [cm <sup>-1</sup> ] | I <sub>D</sub> /I <sub>G</sub> | Carbon recovery [%] |
|---------------------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------|
| 1.8                                         | 42 ± 8                          | 17 ± 2                          | 0.09 ± 0.01                    | 73                  |
| 4.2                                         | 45 ± 9                          | 17 ± 0.4                        | 0.09 ± 0.003                   | 93                  |
| 5.5                                         | 44 ± 3                          | 19 ± 2                          | 0.10 ± 0.06                    | 92                  |
| 7.3                                         | 43 ± 8                          | 21±6                            | 0.18 ± 0.07                    | 89                  |

Table S2Averaged Raman spectroscopic parameters (5 measurements/sample) and product yields of natural graphite photo-oxidized in remotemode for 74 h at 70 °C using varying H2O vapor concentrations, 70 vol% O2 and TiO2 powder photocatalyst

| Reactio                                      | on Rate Calculations                                                                              |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| Reaction rate r = (converted amount of graph | nite to POG)/(TiO <sub>2</sub> photocatalyst mass).(time) [mol kg <sup>-1</sup> h <sup>-1</sup> ] |  |  |
| Photocatalytic                               | graphite oxidation using <b>ALD TiO</b> <sub>2</sub> :                                            |  |  |
| Initial mole of carbon?                      | 0.504 . 10 <sup>-4</sup> mole of C                                                                |  |  |
| Converted to POG $(I_D/I_G \approx 0.3)$ ?   | 0.489 . 10 <sup>-4</sup> mole of C                                                                |  |  |
| Photocatalyst mass?                          | Anatase TiO <sub>2</sub> mass density = 3.8 g/cm <sup>3</sup>                                     |  |  |
|                                              | $TiO_2$ film thickness = 22.5 nm = 22.5 . 10 <sup>-7</sup> cm                                     |  |  |
|                                              | $TiO_2$ film area = 9.92 cm <sup>2</sup>                                                          |  |  |
|                                              | $TiO_2$ film volume = 2.232 . 10 <sup>-5</sup> cm <sup>3</sup>                                    |  |  |
|                                              | → 0.848 . 10 <sup>-7</sup> kg ALD TiO <sub>2</sub> used                                           |  |  |
| Reaction time?                               | 96 h                                                                                              |  |  |
| r = (0.489 . 10 <sup>-4</sup>                | )/(0.848 . 10⁻¹).(96) = 6.0 mol kg⁻¹ h⁻¹                                                          |  |  |
| Photocatalytic gr                            | raphite oxidation using <b>TiO<sub>2</sub> powder</b> :                                           |  |  |
| Initial mole of carbon?                      | 0.504 . 10 <sup>-4</sup> mole of C                                                                |  |  |
| Converted to POG $(I_D/I_G \approx 0.3)$ ?   | 0.449 . 10 <sup>-4</sup> mole of C                                                                |  |  |
| Photocatalyst mass?                          | 6.03 mg of TiO <sub>2</sub> deposited on glass support plate                                      |  |  |
|                                              | → 0.603 . 10 <sup>-5</sup> kg TiO <sub>2</sub> powder used                                        |  |  |
| Reaction time?                               | 96 h                                                                                              |  |  |
| r = (0.449 . 10 <sup>-4</sup>                | )/(0.603 . 10⁻⁵).(96) = 0.078 mol kg⁻¹ h⁻¹                                                        |  |  |

Fig. S5 Reaction rate calculations of remote mode photocatalytic graphite oxidation to POG with moderate oxidation degree ( $I_D/I_G \approx 0.3$ ) using different TiO<sub>2</sub> photocatalysts under 70 vol% O<sub>2</sub> and 4.2 vol% H<sub>2</sub>O vapor for 96 h at 70 °C.



**Fig. S6** Transparency measurements which show the transmission of light within a wavelength range 240-600 nm. (a) Quartz glass support plate and (b) 22.5 nm thick ALD  $TiO_2$  film supported on quartz glass plate.



| RMS roughness         | 0.5 nm              |
|-----------------------|---------------------|
| Minimum value         | 0 nm                |
| Maximum value         | 4.1 nm              |
| Roughness average     | 0.4 nm              |
| Analyzed surface area | 1.0 µm <sup>2</sup> |

Fig. S7 AFM topography image and roughness analysis results of HOPG photocatalytically oxidized in remote mode using 80 vol%  $O_2$  and 1.8 vol%  $H_2O$  vapor for 120 h at 100 °C in presence of TiO<sub>2</sub> thin film.



**Fig. S8** AFM 3D profiles and height distribution profiles of 16  $\mu$ m<sup>2</sup> HOPG surface areas. (a) Blank sample exposed to the gas mixture and UV illumination for 120 h at 70 °C in absence of ALD TiO<sub>2</sub> photocatalyst and (b) POG sample prepared in remote mode in 80 vol% O<sub>2</sub> and 5.5 vol% H<sub>2</sub>O vapor for 120 h at 70 °C in presence of 22.5 nm ALD TiO<sub>2</sub> film.