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1. Synthesis of EY-S-g-C3N4 photocatalyst

©
]
=
3
2
<
=

Eosin-Y

iiyTC

iii)TEA

IV)dry at 160°C

V)Calcination at 550°C

EY-S-g-C3N4 photocatalyst

Figure S1. Synthesis of EY and sulfur-codoped EY-S-g-C3;N4 photocatalyst.
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2. Postulated reaction mechanism in the photoinduced regeneration of NAD(P)H
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Figure S2. Pictorial representation of sequential electron transfers for the selective production of

NAD(P)H. In this reaction, ADPR stands for adenosine diphosphate ribose and ADPR; indicates the
derivative form of ADPR with one extra phosphate group.
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3. Photocatalytic regeneration of 1,4-NAD(P)H investigated by the UV-visible spectroscopic

measurements
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Figure S3. UV-visible spectra recorded for (a) NADH, and (b) NADPH regeneration as a function of
reaction time during the irradiation of solar light. The reaction mixture contains 0.1 M phosphate buffer
solution, 0.005 g EY-S-g-C;5N, photocatalyst, 0.2mM Rh-complex, 0.2 mM NAD(P)", and 0.1 M ascorbic

acid (AsA) under the nitrogen-purged atmosphere at ambient temperature.

S4



4. Reusability test for photocatalytic regeneration of NADH/NADPH from NAD*/NADP*
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Figure S4. Reusability test (five times) with EY-S-g-CsNs photocatalyst in solar-light-active
photoregeneration of NADH (a), and NADPH (b) respectively. Reaction conditions: 2.3 mL sodium
phosphate buffer (pH ~ 7.0, 0.1M), 0.005 g EY-S-g-C3N4 photocatalyst, 0.2mM of NAD*/NADP*, 0.2 mM
of [Cp*Rh(bpy)CI]CI and ascorbic acid of 0.1 M under nitrogen atmosphere at ambient temperature (see
details in experimental section of the manuscript). The reaction time for NADH/NADPH regeneration was

set for 2 hours and yields were calculated for each run and shown here.
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5. Reusability test for photocatalytic oxidation of sulfide to sulfoxide
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Figure S5. Reusability test of EY-S-g-C3N4 photocatalyst under solar-light irradiations for conversion of
bis(4-chlorophenyl) sulfide to bis(4-chlorophenyl) sulfoxide.
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6. Characterization of electronic transition using time-dependent density functional theory

(TD-DFT)

First, we modelled the partial structure of EY-S-g-C3N4 including the 6 heptazine rings and one eosin-Y
covalently linked with the terminal part of heptazine ring by employing density functional theory (DFT)
calculation. Among the three different doping sites in g-C3Ny, the local nitrogen (N) atoms, which atom is
2-fold coordinated with two carbon (C) atoms in CsN7 unit, were replaced by sulfur (S) atoms in order to
form sulfur-dopedg-C;Ny structure. The molecular geometry of partial moiety of EY-S-g-CsNs were
optimized by using the level of B3LYP functional and 6-31G (d) basis set for all atoms. The vibrational
frequencies of the optimized structure showed no imaginary vibrational frequencies, confirming that the
optimized structure is in the stationary state. To obtain the information about the electronic transitions, we
performed the time-dependent DFT calculation with the PBEO functional and def2-SVP basis set because
it has been known that PBEQ functional reasonably describes the absorption spectrum of sulfur-doped g-
C3N4.! Since there are two different conformers in view of orientation of eosin-Y, we compared the
electronic transitions for each conformer as shown in Fig. 5. All the DFT calculations were implemented

by Gaussian 16 package.’
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Figure S6. Absorption spectra of EY-S-g-C3N4 composite calculated from the two different conformational
isomers. Theoretical absorption spectra (black line) of (a) conformational isomer with the eosin group
located at the right side and (b) the other isomer with the eosin group located at the left side. The red-
colored bars indicate the oscillation strengths at the certain wavelength. The theoretical absorption spectra

were broadened by using the Gaussian convolution with the half-width of 0.330 eV.
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7. Structural characteristic of as-synthesized S-g-C3Ny

To characterize the as-synthesized S-g-Cs3N4, we performed the measurements by using power X-ray
diffraction and photoluminescence spectroscopy. As shown in Fig. S7a, the data from the measurement of
power X-ray diffraction (PXRD) shows the clear Bragg pattern around 27.0°, which corresponds to the
interlayer stacking with the d-spacing of 3.28 A. In the small-angle region, the peak around 13.0° is found
and can be attributed to the characteristic graphitic structure of carbon nitride. In addition, we also measured
the emission spectrum of S-g-C;Ns measured at the excitation of 350 nm by using Hitachi F4500
spectrophotometer shown in Fig. S7b. The emission spectrum shows the prominent peak around 440 nm,
reflecting the existence of optical bandgap due to the incorporation of sulfur atoms to the graphitic carbon

nitride.
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Figure S7. Characterization of sulfur-doped g-CsN4 by using powder X-ray diffraction (PXRD) and
photoluminescence. (a) Results from the measurement of PXRD. (b) Emission spectrum measured at the

excitation wavelength of 350 nm.
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8. Characterization of structure of EY-S-g-C3N4 composite by using the solid-state '3C NMR

spectroscopy
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Figure S8. Cross-polarization magic angle spinning solid-state NMR spectrum of EY-S-g-Cs;N4 composite.
The appearance of peak at 133.93 ppm can be attributed to the existence of ketonic carbon, which is formed

by the covalent ligation between EY moieties and S-g-CsNy.
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9. Synthesis and 1H NMR spectrum of rhodium complex
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Figure S9. Synthesis of rhodium complex
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Figure S10. '"H NMR spectrum of rhodium complex [Cp*Rh(bpy)CI]CL. '"H NMR (500 MHz, CDCl;) §

1.74 (s,30H), 8.9 (d,4H), 8.8 (d,4H), 8.2 (t,4H), 7.8 (t,4H).
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10. '"H NMR spectra of bis(4-chlorophenyl) sulfoxide

The bis(4-chlorophenyl) sulfoxide product was prepared from bis(4-chlorophenyl) sulfide (Immol, 0.255g),
EY-S-g-CsN4 photocatalyst (0.005g), and 0.05 M HCl in 4 ml ethyl alcohol. The obtain product was purified
by column chromatography (silica gel, ethyl acetate- hexane, 1:4).

'H NMR(500 MHz, CDCl3): & 7.58-7.55 (d, J=15 Hz, 2H,ArH), 7.45-7.42 (d, =15 Hz, 2H, ArH).
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Figure S11. 'H NMR spectrum of bis(4-chlorophenyl) sulfoxide
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11. Mass spectra of bis (4-chlorophenyl) sulfoxide
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Figure 12a: Mass spectrum of bis (4-chlorophenyl) sulfoxide.
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Figure 12b: Mass spectrum of bis (4-chlorophenyl) sulfoxide (expended form).
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12. Zeta potential analysis
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Figure S13. Zeta potential analysis of (a) Eosin-Y with the value of -10.3mV, (b) EY-S-g-C5N4

photocatalyst with -79.6mV, and (c) thiourea with -0.591 mV.
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13. Particle size studies

Dynamic light scattering (DLS) techniques were investigating the average particle size of eosin-Y, thiourea
and EY-S-g-C3N4 photocatalyst in solution phase with the help of nano-zetasizer (NZS90). The average
particle size of EY-S-g-C3Ny photocatalyst (near about 500 nm) is smaller than eosin-Y (~750 nm) and
thiourea (~5500 nm) as shown in Figure S11. As per reported method,>* smaller size of photocatalyst is
highly efficient than the bigger size of photocatalyst due charge carrier excitation and surface-active sites.

Therefore, newly designed EY-S-g-CsN, photocatalyst is more efficient than eosin-Y and thiourea.
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Figure S14. Particle size analysis of (a) Eosin-Y, (b) EY-S-g-C3;N4 photocatalyst, and (¢) thiourea.

S17



14. Control experiment in the absence of NAD"
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Figure S15. Control experiment for NADH regeneration in absence of NAD" under solar light, no
absorption peak obtained at 340 nm (b) Control experiment for NADH regeneration in absence of NAD*

under solar light, no absorption peak obtained at 340 nm in different time interval.
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15. XRD and XPS studies

The XRD patterns of EY-S-g-C3N,4 photocatalyst and reuse EY-S-g-C3;N4 photocatalyst are shown in Figure
S15. The characteristic peak of EY and S-doped g-C;N4 observed at 10.41° and 27.8° which is clearly
indicate the existence of EY and sulfur, respectively.” Furthermore, XRD pattern of reused EY-S-g-C3Ny
photocatalyst still reveals the same characteristic peaks. These results clearly indicate that the EY-S-g-C3N4
photocatalyst is highly stable, therefore not losses the photocatalytic properties during regeneration of
NADH\NADPH and oxidation of bis(4-chlorophenyl) sulfide to bis(4-chlorophenyl) sulfoxide. Stability of
photocatalyst also confirmed by X-ray photoelectron spectroscopy (XPS) analysis.
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5 10 15 20 25 30 35 40
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Figure S16. XRD spectra of fresh EY-S-g-C3;N4 photocatalyst (red line) and reused EY-S-g-C3Ny
photocatalyst (blue line).
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The restoration of EY-S-g-C3N4 was confirmed by XPS (Model: KARTOS AXIS NOVA). The XPS
spectrum of EY-S-g-C3Ny, the intensity of carbon ‘C’1s (Figure S16b) can be attributed three peaks at 283.8
eV (C-C), 284.9 eV (C=N) and 287.9 ¢V (N-C=N).!’The spectra of N 1s (Figure S16¢) is allocated peak
near about at 397.9 eV for nitrogen (N) bonded with two carbon (C=N-C) in an aromatic triazine rings, and
the additional peak near about at 401.0 eV sp-hybridized nitrogen (N-H) of g-C3N, rings, i.e. heptazine
rings.!! In addition, the spectra of ‘O’ 1s (Figure S16d) is designated peak at 529.9 eV after the formation
of EY-S-g-C3N4 composite indicated the presence of C=0O bond along with C-N bond (from Nls
peaks).!*Furthermore, two peaks near about at 160.9 eV and 163.8 eV in S2p spectra (Figure 16¢) assigned
the binding energy of S*" and N-S bond, which indicates the existence of Sulfur in g-C3Na.!* Moreover, as
shown in Figure S16f the XPS spectra of Br 3d which attributed two peak at binding energy 68.9 eV, 70.3
eV corresponding to Br of eosin-Y.8Additionally, the spectrum (Figure S16a) of EY-S-g-C3Ny, the intensity
of the carbon ‘C’ 1s peak relative to the nitrogen ‘N’ 1s peak was reduced with the finding of the oxygen
‘O’ 1s peak along with Br 3d, and S2p in the XPS survey. This confirmed the creation of an amide bond in
place of the carboxyl group and also confirmed the S-doped in g-C3N4.'” Finally, the experimental results

revealed the formation of EY-S-g-CsN4 composite as a photocatalyst.
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Figure S17. XPS spectra of fresh EY-S-g-C3Nj4 (blue line) and reused EY-S-g-C3N4 (red line) photocatalyst.

(a) XPS survey spectra of EY-S-g-C3N4 and (b, ¢, d, e, f) Cls, Nls, Ols, S2p, Br3d high resolution XPS
spectra of EY-S-g-C3Na.
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