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Sl1. Detailed description of the experimental procedures

SI1.1. Details on the adsorption studies

Because of high adsorption constants observed (~10* L mol) and low adsorption capacity (~ 1 nmol

per 50 mg sample), we had to work with low concentrations close to the analytical detection limits.

The system used for adsorption experiments is presented in Figure S1 contains a fraction collector
and a syringe pump. The fraction collector had a built-in 3-way valve with a needle that allowed
injecting a given solution into any vial. The syringe pump equipped with an SGE 1mL precision

syringe acted as a liquid handling unit injecting pre-defined volumes of the solution into vials.
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Figure S1. Scheme of the automated system used for the adsorption experiments.

The solution was changed following the procedure of blowing air into all connecting tubes and the
syringe, washing with the solvent, and blowing air. Afterwards, 5 full injections into an empty vial
were performed to wash the needle. Solutions were changed in increasing concentration order

starting from solvent (hexane, 99%, Fischer Scientific).



The vials for the adsorption experiment were divided into 4 parts: (i) control, (ii) reference, (iii)
catalyst support, and (iv) catalyst. The control vials were injections of the solvent at the beginning
and end of every run. This way, it was possible to control that the solution concentration was
consistent during the injection and observe any problems of dead volume in the fluidics connections
which would cause a lower concentration at the beginning of the experiment. The remaining three
groups of vials contained the same volumes of the solutions. The reference vials were empty to study
linearity of the response with the concentration. The vials with 50 mg catalyst support were used to
study the adsorption of the compounds over the catalyst support considering that its surface area
was significantly higher than that observed for the Pd nanopatrticles. Lastly, the vials with 50 mg

catalyst were used to study adsorption over both the Pd catalyst and the support.

The vials with the catalyst support and the catalysts were reduced in a flow of 20 mL min™ 5 vol% H,
in N, at 150 °C for 1 h followed by flushing with N, and passivation with 1 vol% O, in N, before
exposure to air. The adsorption experiments were performed within 2-4 h after exposure to air. A

significant decrease in adsorption capacity was observed only after about 1 week of exposure to air.

Analysis of the samples obtained

The samples obtained were analysed directly by gas chromatography with a Shimadzu GC 2010
equipped with an FID detector. High adsorption observed required using trace substance
concentrations (~ 0.1 ppmy) to determine the adsorption parameters. The GC analysis was optimised
to ensure high reproducibility and low detection limits. The GC was equipped with a Stabilwax 60 m x
0.32 mm x 1 ym column, 8 pL of the sample were injected in a splitless mode at the column
temperature of 40 °C and the inlet pressure of 100 kPa. After 4 minutes at 40 °C, the column
temperature was ramped at 15 °C min* to 175 °C followed by holding this temperature for 3 min. The
injector pressure was also ramped after 8.5 min from injection — 30 kPa min™ till 220 kPa followed by

holding the pressure for 4.5 min.

The analysis method was extended when quinoline was injected. After reaching the column
temperature of 175 °C, the second ramping state was started at 25 °C min till 255 °C. Meanwhile,
the injection pressure was also ramped after 8.5 min at 100 kPa — the ramping at 30 kPa min-1 till

380 kPa was performed to desorb quinoline faster.

The method provided a detection limit of 0.2 pM with complete separation of all the studied
compounds. The analysis was performed based on the absolute area of the peak corresponding to
the repeatability of + 2%. No internal standard was used to avoid interference with the adsorption

such as displacement of the analysed species or adsorption of the internal standard itself.



Analysis of the data obtained

The concentrations in the reference solutions were processed using a weighted least-squares
method. The weights were taking into account the experimental error of +2% or a fixed error
(whichever is larger). The fixed error was found to depend on the concentration of the species
analysed and varies between 3 pM (when 500-800 uM MBY solution was used), 1 yM when 200 uM
MBY or MBE solutions were used, or 0.3 yM when 40 uM MBE solution was taken.

Comparison of the amount of the substrate injected into the vials and determined by the analysis
provided the amounts of adsorbed and equilibrium concentrations. These raw data were analysed
using the Monte-Carlo regression method [1]. Sets of simulated experimental data (1000 for each
case) were created (with errors introduced with a normal distribution and standard deviations as
above). These data were fit with the Langmuir adsorption model analysing the parameters obtained

statistically considering covariations of the parameters and reporting 90% confidence intervals.

SI1.2. Details on the Computational Modelling

We used the Vienna Ab Initio Simulation Package (VASP) to perform spin-polarised periodic density
functional theory-based calculations using the projector augmented wave method [2-5]. The cut-off
energy for the expansion of the plane-wave basis sets was set to 550 eV, which gave bulk energies
converged to within 10° eV. For the structural optimization, the convergence criterion was set to 0.01
eV AL, The ideal Pd(111), Pd(110), and Pd(210) surfaces were modelled by 4x4 cell with 5 atomic
layers and of the five atomic layers bottom three layers were fixed to mimic the bulk of the material.

The calculated Pd lattice constant of 3.904 A agreed with the experimental value of 3.891 A [6].

The adsorption of MBY and MBE molecules on Pd surfaces was allowed only on one of the exposed
surfaces and the spurious dipole moment, due to the adsorbed molecule on one of the two surfaces
was taken into account using methods implemented in VASP according to the procedures of Makov
et al. and Neugebauer et al.[7,8]. For the interaction of MBY and MBE with Pd surfaces, the
dispersive effects may be significant; therefore, in all the calculations, we included Grimme'’s
dispersion correction (DFT+3) [9]. To choose an appropriate k-point grid for these calculations we
performed benchmark calculations on the adsorption property of MBY on Pd(111) surface with 3x3x1
and 5x5x1 K-point grid, which yielded a difference in adsorption energy of 7.690x10* eV, which is
within the DFT errors. Additionally, our previous studies on the interaction of organic molecules such
as furfural on Pd surfaces have shown that the use of a K-point grid of 3x3x1 was sufficient,
therefore, in this study, a K-point grid of 3x3x1 was used [10]. The adsorption energy was calculated
as a difference in the total energy of the molecule on the surface and the energies of the isolated

molecule and the pristine surface.



SI1.3. Details on kinetic studies and characterisation

Catalyst preparation

The catalyst, 2 wt% Pd/CaCOs catalyst was prepared by wet impregnation — a solution of palladium
(1) acetate (98% Fisher Scientific) was dissolved in acetone and impregnated into the CaCO3; support
(99%, Sigma-Aldrich) to provide the Pd loading of 2 wt%. Acetone was evaporated in a rotavapour
and the solid material was calcined at 400 °C in the flow of air for 1 hour, 100 mL min. (All gas flow
rates in the work are referred to normal conditions of temperature and pressure). Afterwards, the
catalyst was reduced in a flow of 20 mL min? 5 vol% H, in N, at 150 °C for 1 hour, gas was replaced
with N, and a small amount of air (1 vol% O,) was introduced to passivate the catalyst surface.

The Pd catalysts obtained was separated into two parts. One part was poisoned with Pb by mixing
the 11 g of the catalyst with 50 mL of 50 mM lead (ll) nitrate solution on stirring and heating to about
70 °C. The catalyst was decanted from the solution, washed with water (3 x 15 mL) and dried at 70
°C.

Catalyst characterisation

Elemental analysis performed on a Rigaku Primus IV WD-XRF instrument using a fundamental
parameters model. For the powder experiments, the samples were mounted on a filter paper holder
and the weight/diameter used to correct the model for thickness effects. The original Pd catalyst was
found to contain 2.1 wt% Pd balance CaCO3; and below 0.05 wt% other elements; the Pd-Pd catalyst
contained 1.8 wt% Pd and 3.7 wt% Pb.

CO chemisorption studies were performed in a modified flow adsorption system described in
reference [11]. The catalysts (500 mg) were placed into a glass tube between quartz wool plugs.
After the reduction at 350 °C for 2 h in a flow of 1 vol% H- in He 5 mL min™, purging with He for 2 h
and cooling to 35 °C, a flow of 4 mL min* 1.2 vol% CO/ 1.2 vol% Ar in He was admitted into the
catalyst with the outlet concentration monitored with a quadrupole mass-spectrometer (m/z=12 to
avoid interference with traces of N2). The CO chemisorption capacity was measured related to the
signal of Ar and checked against a reference 0.5 wt% Pt/Al,O3 catalyst (provided by Micromeritics).
The resulting CO chemisorption capacity for the Pd/CaCOs catalyst was 4.62+0.12 pmol g™c.: and
2.56+0.10 ymol gca for the Pd-Pb/CaCQOs; catalyst.

Liquid-phase hydrogenation

Hydrogenation experiments were carried out in a Parr 160 mL autoclave. In a typical experiment, the
catalyst (50 mg) was placed into the reactor and 90 mL hexane (95%, Sigma-Aldrich) solvent was
added. The reaction mixture was heated to the desired temperature, purged 5 times with N, then 5
times with H,. The substrate, 2-methyl-3-butyn-2-ol (98%, Fisher Scientific) diluted to 10 mL was
added into a separate vessel, degassed purging 5 times with H, and injected into the reaction vessel.

Reaction time started and the liquid samples (0.7 mL) were collected periodically during the reaction.
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The samples collected were analysed with a Shimadzu GC 2010 gas chromatograph equipped with a
Stabilwax 10 m x 0.15 mm x 0.15 ym column and a flame ionisation detector. The analysis was
performed referring to the internal standard, nonane (98%, Sigma-Aldrich), added into the solvent
before the reaction. Experiments with various catalyst masses confirmed the absence of external
mass transfer limitations at the stirring rate above 700 rpm. Calculation of the Weisz-Prater numbers
showed that internal mass transfer was not a limiting factor.

SI2. Detailed description of the kinetic models used

SI2.1. Modell. Langmuir-Hinshelwood model of hon-competitive adsorption of organic
species and H; over the Pd catalysts.

Figure S2 shows the reaction network of the reactions used in model 1. Here, we use 3 reactions: (i)
MBY to MBE, (ii) MBE to MBA, and (iii) direct MBY to MBA. The model assumes non-competitive
adsorption of the organic species and hydrogen molecules, which is reasonable considering much
larger dimensions of the organic molecules and a large amount of space in between the molecules.
In this model, we neglect dimer formation which was below 0.2% compared to either specie — well in
agreement with literature data [12].

k k
HO>{ —> Ho > Z 2o
MBY M

BE MBA
W

Figure S2. Reaction network of model 1 of MBY hydrogenation reactions.

The elementary steps of the reactions considering adsorption sites for organic molecules (o) and
hydrogen (€) are shown in Table S1.



Table S1. Stages and mathematical expressions corresponding to model 1.

Overall reaction stage Reaction / process Mathematical description
H . Ch2
Hz (9) - H: (catalyst) H, (gas) < H, (solution) H= -
. KHZ K — 96 H2
H, (solution) + € <= H,- € H= Ciry .
0
MBY - MBE MBY + 0 &% MBY-0 Kupy = 7o
MBY Yo
k
MBY-G + H,- € > MBE-0 + € 1 = k1 Oompy Ocuz
KuBE OsmBE
MBE - MBA MBE:¢c «— MBE + o Kupe = 7=~
MBE Yo
k
MBE-G + H,- € > MBA.G + € 12 = k2 OgmpE Oenz
Kympa OsMBA
MBA.c «—— MBA + 0 Kupa = 7~
MBA Yo
K3 * _ OomBEs Oe
MBY - MBA MBY:0 + H,- € & MBE*.0 + € K3 = o .
oMBY Ye H2
k
MBE*.g+ H,- € > MBA-G + € 13 = k3 OgmpEs Oen2

Considering the material balance of the o and € adsorption sites, free coverage of these sites can be

calculated according to equations S1, S2:

1 1
Oc = 1+Ky Cyz  1+H pys Ky’ D
1
0, = . (52)
1+KmBy CMBy +KMBE CMBE+KMBA CMBA
Using these equations, coverage of the organic species (MBX = MBY, MBE, or MBA) can be
calculated using equation S3:
KmexCMmBx

0 = . 53

MBX ™ 1+Kmpy Cmy+KmBE CMBE+KMBA CMBA (53)
The resulting rate equations are shown in equations S4-S6:

_ KmByCmBY Ky Hph2
N =K ) y 54
1+KymBy CMBYy+KMBE CMBE+KMBA CMBA 1+H PH2 Kg
K, C Ky H
ry, = kz MBECMBE . _BgHDPH2 , (55)
1+KyBy CuBy+KMBE CMBE+KMBA CMBA 1+H py2 Ky
K Cc Ky H
ry = k3K3* MBYCMBY . _SH A DH2 : (.5'6)
1+KmBy CuBy+KMBE CMBE+KMBA CMBA 1+H Ph2 Ky



Considering operation at constant pressure, neglecting MBA adsorption (Kuea< Kuee) and
considering low hydrogen adsorption (H pu2 Ku « 1), the rate equations can be simplified into
equations S7-S9:

C
= 1! MBY . (57)
1+KymBy CMBYytKMBE CMBE
’ CMBE
T =Ky s (58)
1+KmBy CMBYytKMBE CMBE

CmBY (59 )

= ks’ :
r3 3 1+Kpmpy CuBytKMmBE CMBE
where kq = ky Ky H Kypy Puz, k3 = k2 Ky H Kypg Puz, and k3 = ks K3 Ky H Kypy Puz-

The experimental concentration profiles were integrated with an in-house program written in Matlab

using consumptions of the reaction species shown in equations S10-S12:

ACmBy _ Mcat Wpd .

dt Vi, Mpg (=1 —713), (510)
ACMBE __ Mcat Wpd _

dt Vi Mpg (r, —12), (511)
ACmBA _ Mcat Wpd _

dt VL Mpg (rz = 13), (512)

where V, is the total volume of liquid in the reactor, mcs is mass of the catalyst added, wp,4 is mass
loading of Pd in the catalyst, and Mpq is the molar mass of Pd metal. The system of these 3 equations
was integrated numerically, not considering the material balance of organic species to identify low-
accuracy integrations by deviations from the material balance. Figure S3 shows that the values
differing by more than a factor of 3 can be obtained fitting the same experimental data with high
accuracy — the sum of differences between the models based on the k; values of 0.3-:108 L molpg?* s

and 1.1-10% L molpg™ s is vanishingly low!
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Figure S3. (A) Concentration profile of MBY semi-hydrogenation over a 0.1 wt% Pd/CaCOs catalyst
with the lines corresponding to various Langmuir-Hinshelwood model fitting with (B) differences in all
concentration between the models.

Why the results are so ambiguous?
The problem with the results comes from the form of equations S7-S9 and the fact that adsorption is

strong. Strong adsorption in mathematical terms means that Ky;zy Cypy >1. Taking equation S7 as

an example, we could extract Ky gy Cypy from the denominator to obtain equation S13:

r = kqr CmBY (513)

Kupy Cmpy 1/KmBy CuBy+1+KMBE CuBE/KMBY CMBY

In this equation, it is clear that 1/Ky sy Cypy iS @ vanishingly small value that could be neglected

resulting in equation S14:

r o= kq! CmBY
L™ Kmpy Cupy 1+KmpE CuBe/KmBY CMBY
(S14)
It could be simplified eliminating C,,zy to obtain equation S15:
=2 ! (515)

Kupy 1+Kmpe/Kmpy ' CMmBE/CMmBY

As a result, there are only 2 independent parameters (k,'/Kygy and Kygg/Kugy) in the equation. For
example, the triplets of (k;', Kygg, Kygy) Of (1,2,1) and (100,200,100) will generate exactly the same
ki'/Kygy and Kygr/Kygy ratios and the same reaction rate in equation (S15) — hence equations S7-
S9. Therefore, it is the notation of equations S7-S9 creates a problem and leads to poorly defined

results.



Sl2.2. Model2. Simplification of model 1 considering relative adsorption constants.

Model 2 considers difficulties in determining the absolute values of the adsorption constants. Relative
constants were uses relative adsorption constants for a specie X ( Qx=Kx/Kusy ) as in equations S16-
S18:

rl — k]_” CmBY (5]6)

1/Kmpy+ CmBy +QMBE CMBE

7‘2 — kz” CMBE (517)

1/Kmpy+ CMBY +QmBE CMBE

r3 — k3” CMmBY (518)

1/Kmpy+ CMBy +QmBE CMBE

where k" are the corresponding constants ki’ divided by Kvsy excluding k3’ = k, Ky H py,, Kvse was
taken out to form Quge into the dividend. If the adsorption constant Kygy is high, the value of 1/Kvey
can be neglected providing equations S19-S20 used in model 2.

T'1 — le CmBY (519)

7
CmBy+QMBE CMBE

Q Cc
rz — k2” MBE “MBE s (520)
CmBy+QMmBE CMBE

T3 — k3” CMmBY (521)

CmBy+QmMBE CMBE

SI3. Experiments on alkyne displacement with alkene

In a set of experiments, we aimed to verify another basis of the typical Langmuir-Hinshelwood
hydrogenation model based on thermodynamic explanation of selectivity — displacement of alkene
species with alkyne. An excess of MBE was added to provide full MBE adsorption onto the catalysts
before the addition of small amounts of MBY. Figure S4A, B show that there was no appreciable
decrease in MBY adsorption over both catalysts studied. The experimental points laid around (and
never substantially below) the isotherms observed for the individual components shown as solid lines
in the figures. Unfortunately, the attempts to study MBY displacement in presence of high-
concentration (~ 1mM) MBE were unsuccessful because trace MBY impurities in the high-
concentration MBE solution prevented any adsorption measurements. The existing data, however,
indicate that MBE did not displace MBY from the catalyst surface, in agreement with the

thermodynamic explanation.

Figure C, D show an experiment that studied if MBE can be displaced with MBY. Here, no significant
change in MBE concentration over the catalysts was observed when increasing amounts of MBY
were added to the catalyst. Little difference was found on the sequence of dosing the substrates: the
addition of either MBY or MBE first resulted in insignificant changes in MBE concentration over the

catalysts.
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Figure S4. MBY adsorption over the (A) 2 wt% Pd/CaCOs and (B) Pb-poisoned 2 wt% Pd/CaCO3
catalysts with pre-adsorbed MBE at the initial concentration of 34 umol L. Solid lines represent
adsorption isotherms observed without MBE added. Change in equilibrium MBE concentration with
MBY addition onto the (C) 2 wt% Pd/CaCO3; and (D) Pb-poisoned 2 wt% Pd/CaCQj3 catalysts
compared to initial MBE concentration (dashed line).

Therefore, we can conclude that there are two sites over the Pd catalysts: (i) alkyne sites that
strongly adsorb alkyne molecules and weakly alkene molecules, (ii) alkene sites that strongly adsorb
only alkenes. The alkene sites do not seem to displace adsorbed alkene species by the excess of
alkyne creating a pathway for non-selective reaction. Poisoning the surface of Pd catalyst with Pb
significantly decreases the number of alkene adsorption sites — the relative decrease agrees with the

corresponding alkyne semi-hydrogenation selectivity.

Sl4. Adsorption isotherm of quinoline over the Pd catalysts

Figure shows quinoline adsorption over the 2 wt% Pd/CaCO3; catalyst and Langmuir data fitting. This
isotherm shows good agreement with the Langmuir adsorption model. It is worth noting, however,
that good fit of the experimental data does not confirm that all model assumptions are valid [13-15].
In particular, we cannot estimate the adsorption energy which may depend on the surface coverage
as known in the gas-phase adsorption studies of ethylene and acetylene over the Pd catalysts [16].
Temkin isotherm may be a better fit of the alkyne adsorption over the Pd catalysts and it is possible
to speculate that Pb poisons high-energy sites of Pd catalyst. Such speculations, however, are

difficult to support further; therefore, Langmuir model was used throughout.
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Figure S5. Quinoline adsorption over the 2 wt% Pd/CaCOs catalyst in hexane.

Confidence intervals for the Langmuir model fitting onto quinoline adsorption are broad with both the
adsorption constant and the capacity poorly defined. The reason for the poorly defined values is that

full surface coverage was not observed.

Table S2. 90% Confidence intervals of quinoline adsorption over the 2 wt% Pd/CaCOs catalyst.

Best fit value Confidence interval
Lower boundary Higher boundary
K (L pmol?) 0.32 0.00017 11.6
n_max (Umol gear?) 0.52 0.308 120

SI5. Model of MBY hydrogenation over the alkene and alkyne active sites.

Figure shows the scheme of the reaction model that takes into account MBY into MBE
hydrogenation over the alkyne sites followed by MBE to MBA hydrogenation over both the alkene
and alkyne sites. The model assumes non-competitive adsorption of organic species and hydrogen
as well as no adsorption of MBY over the alkene sites. Adsorption constants of alkyne over the
alkyne sites were taken according to the value determined experimentally, while the adsorption
constant of alkenes over the alkyne sites was considered to be significantly lower than that of alkynes
— at a fixed value of 30 L mol™. The particular value plays a little role as long as it is significantly

lower than MBY adsorption constant determined experimentally.

K, ko (alkyne sites)
(alkyne sites) /—\
=
HO > — HO \ HO>—/
MBY MBE\__/ MBA

K3 (alkene sites)

Figure S6. Scheme of the MBY hydrogenation model that considers alkyne and alkene adsorption
sites.
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Equations S22-S24 are obtained based on these assumptions and include Naiyne_sites @Nd Naikene_sites
are the numbers of alkyne and alkene adsorption sites determined by the adsorption measurements,
Kwmey and Kuge are the adsorption constants of MBY and MBE over the alkyne sites. The model
assumes adsorption of the organic molecules over “ensembles” of several neighbouring Pd surface
sites for simplicity. Kvsy was determined experimentally, while Kvse was assumed to be significantly
lower with the value of 10 L mol? (a factor of 5,000 lower than Kvsy). Hydrogenation of MBE over the
alkene sites was considered as a zero-order reaction because no competition with MBY adsorption

and high adsorption constant resulted in complete surface coverage.

KmpyCmBY
rn=kn i $§22
1 1"alkyne_sites 1+KypyCupy +KMBE CMBE, ( )

KmBeCMBE
rn =kyn i 523
1 2"talkyne_sites 1+Kypy Crmey +KmBE CMBE ( )

r3 = k3nalkene_sites' (524)

A Matlab program performed numerical integration of the reaction rates considering changes in MBY
and MBE concentration described in equation S25-S27. Regression analysis performed adjusted

only the apparent rate constants (ki, k2, k3) to describe the experimental concentration profiles.

dCmpy _ -1, (525)
dt

— Y =1 1 —T3

S s 526

%:TZ +T3, (527)

dat

A sensitivity analysis of the model was performed — a pair of parameters was perturbed from its
optimal value (the most accurate description of the experiment) and the effect on the weighed
residual was analysed. It is worth pointing out that using statistical weighing (inversely proportional to
experimental uncertainties) provided dimensionless residual values — the values independent of the

concentration units.

Figure S shows the resulting sensitivity profiles which show a narrow region of parameters that
describe the experimental concentration profiles. The sensitivity analysis can also show covariation
of the parameters — the phenomenon where a change in one parameter may be compensated by a

change in another one.

No significant covariation of the parameters can be observed which would have resulted in the

formation of narrow valleys across the parameter space
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Figure S7. Sensitivity analysis — the effect of changing the model parameters away from the optimum
onto the weighted sum of residuals.

S16. DFT adsorption studies performed over the Pd surface

MBY and MBE molecules could adsorb on the Pd catalyst surface through different sites (Figure S).
The initial adsorption could occur via the methyl group, oxygen or hydrogen atoms of the hydroxyl
group and or the terminal CH group. Additionally, such adsorption could occur on top of a Pd atom, in
between two Pd atoms, and on the hollow sites.

(a)

(b) (c)

()

Figure S8. Possible adsorption positions of MBY (a) through the methyl group, (b) through the O-
atom of the OH group, (c) adsorption through H of the CH. The of MBE adsorption (d) via all H on
CHs group, (e) adsorption via H of the OH group and (f) via the CH3s group. The green circles
represent the H and O-atoms with respect to which the adsorption was considered.

To further quantify our observation, we investigate the area under the Pd d-orbital signatures for
these two models using:

Area = f__: D.dE,
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where —a and —b are the lower and upper limit respectively for the overlapping region, D is the
contribution of the d-orbital signatures and dE is the difference between two nearest energy levels.
Our calculation shows that the area under the d-orbital signatures of the first, second and the third Pd
atoms in MBY_O_ Pdneiow model are respectively, 0.244, 0.165 and 0.205 number of states (and a
total of 0.615 number of states), which are higher than 0.111 number of states for MBE_OH_Pdpqg
model. Thus MBY model is more strongly adsorbed on the Pd(111) surface as compared to the MBE

molecule.
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Figure S9. The optimised structures of (a) MBY_CHz_Pdiop, (b) MBY_CHz_Pdpag, (C)
MBY7CH37PdhoIIow, (d) MBYioipdtop, (e) MBYioipdbdg, (f) MBYioipdhollow, (g) MBY7CH7PC/[O,3, (h)
MBY_CH_Pdsag, and (i) MBY_CH_Pdhoiiow.
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