Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Reshaping the Active Pocket of Esterase Est816 for Resolution of Economically Important Racemates

Xiaolong Liu¹, Meng Zhao² Xinjiong Fan^{2*} and Yao Fu^{1*}

¹Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China.

²School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd., Hefei,
230032, Anhui, People's Republic of China

*Correspondence to: Xinjiong Fan, Ph D: fanxinjiong@126.com and Yao. Fu, Ph D: fuyao@ustc.edu.cn

Number of pages: 25 Number of figures: 4 Number of tables: 3

Table of Contents

1. Supplementary Figures and Tables	S3-S7
2. Spectral Data	S8-S17
3. ¹ H NMR and ¹³ C NMR Spectra	S18-S25

1. Supplementary Figures and Tables

Fig. S1. Structural analyses of Est816 (5EGN) and AidH (4G8B). The catalytic residues (S93, D214 and H242) and the oxyanion hole residues (F28 and I94) of Est816 were shown as white sticks. The residues F142 of Est816 and Y160 of AidH were shown as yellow sticks. The substrate of AidH (N-hexanoyl-L-homoserine lactone) was shown as green sticks.

Fig. S2. The hydrolytic activity of $Est816_{WT}$ and variants. Recombinant cells with wide type and different mutant genes were inoculated on LB plate containing 10 mM naproxen ethyl ester and cultured at 37 °C for 24 hours.

Fig. S3. Superimposed of the crystal structures of Est816 and 6_AlphaBeta_hydrolase family esterases. The $\beta7/\alpha10$ loops (Est816 numbering) were shown as yellow, and a hydrogen bond between the backbone N-H of A216 and the O_{δ} of catalytic D214 was 2.9 Å.

Fig. S4. SDS-PAGE analysis of the purified recombinant $Est816_{WT}$, Est816-M3, and Est816-M4. Protein markers (lane 1 and 5) stained with Coomassie blue, cell-free lysates (lane 2, 6, and 9), the supernatant of *E. coli* BL21 (DE3) cell lysates (lane 3, 7 and 10), purified target protein (lane 4, 8 and 11). The molecular mass of the enzyme subunit was estimated using the following protein markers as standards: rabbit muscle phosphorylase B (97,200 Da); bovine serum albumin (66,409 Da); ovalbumin (44,287 Da); carbonic anhydrase (29,000 Da).

List	Substrate	Conversion / %	Enantiomeric excess / %	<i>E</i> value
1	1a	73%	$13\% ee_s$	1.7
2	2a	82%	$14\% ee_8$	2.2
3	3 a	75%	$16\% ee_8$	2
4	4a	87%	$12\% ee_8$	2.5
5	5a	71%	39%ee ₈	7.6
6	6a	65%	45.5%ee _R	6.7
7	7a	91%	$3\% ee_R$	1.3
8	8 a	51%	73.5%ee _R	15
9	9a	97%	0	1

Table S1. Enantiomeric excess, conversion and the corresponding E values of ethyl 2-arylpropionates using Est816_{WT}.

^aConditions: Sodium phosphate buffer (0.2 M, pH 8.0) with substrate (10-50 mM), 5% (v/v) DMSO, and 150 μ g of enzyme. The reactions were conducted at 40 °C for 15 min to 12 h. The conversions and enantiomeric excess values were determined by HPLC and chiral HPLC, respectively.

Mutation	Forward primer	Reverse primer
A 214E	GAAGAAGATCTGTTTACGACCGT	GCAGTTGATTGTTGGCCACGGTC
AZIOF	G GCCAACAATCAACTGC	GTAAACAGATCTTCTTC
A 216W	GAAGAAGATCTG <mark>TGG</mark> ACGACCG	GCAGTTGATTGTTGGCCACGGTC
A210W	TG GCCAACAATCAACTGC	GTCCACAGATCTTCTTC
A 216D	GAAGAAGATCTG <mark>CGT</mark> ACGACCGT	GCAGTTGATTGTTGGCCACGGTC
AZIOK	GGCCAACAATCAACTGC	GTACG CAGATCTTCTTC
E14 2 V	CATCGGCGCATATGGCGGCCTGC	GAGACGGCGCCCTCGAGCAGGC
F142 Y	TCGAGGGCGCCGTCTC	CGCCATATGCGCCGATG
E29W/	CTTCATCCCTGGAGCACGAATGG	GTACCAGATCCCCCCATTCGTGC
F28W	GGGGATCTGGTAC	TCCAGGGATGAAG
E29C	CTTCATCCCGGTAGCACGAATGG	GTACCAGATCCCCCCATTCGTGC
F28G	GGGGATCTGGTAC	TACCGGGATGAAG
6201	CTTCATCCCTGG <mark>CTT</mark> ACGAATGG	GATCCCCCCATTCGTAAGCCAGG
529L	GGGGATC	GATGAAG
C110DC110A	CATCCTCAGCCCTGCTACCGGTC	CAAGACCGGT <mark>AGCAGG</mark> GCTGAG
5118PG119A	TTG	GATG
0110001101	CATCCTCAGCCCTGTTACCGGTC	CAAGACCGGTAACAGGGCTGAG
5118PG119V	TTG	GATG
S119DC110S	CATCCTCAGCCCTTCTACCGGTC	CAAGACCGGT <mark>AGAAGG</mark> GCTGAG
5116P01195	TTG	GATG
V100I	GATCCCAACGGGTTGTTTGCCTG	GTTCCAGGCAAACAACCCGTTGG
VI90L	GAAC	GATC
V100E	GATCCCAACGGGTTCTTTGCCTG	GTTCCAGGCAAAGAACCCGTTGG
V 190F	GAAC	GATC
L 145C	CATTCGGCGGCGGTCTCGAGGGC	CGTTTTGAACGCGCGGAGACGGC
L1450	GCCGTCTCCGCGCGTTCAAAACG	GCCCTCGAGACCGCCGCCGAATG
	CATTCCCCCCCTTTCTCCACCCC	CGTTTTGAACGCGCGGAGACGGC
L145F		GCCCTCGAGAAAGCCGCCGAAT
	GeediciteeGeotiteAAAAeo	G
A 1 40T	CTGCTCGAGGGCTTAGTCTCCGC	GCTCACGTTTTGAACGCGCGGAG
A149L	GCGTTCAAAACGTGAGC	ACTAAGCCCTCGAGCAG
A 140E	CTGCTCGAGGGCTTTGTCTCCGC	GCTCACGTTTTGAACGCGCGGAG
A149F	GCGTTCAAAACGTGAGC	ACAAAGCCCTCGAGCAG
1 1001	CTGGCACCGGTATTGGCGAGGGC	CAGCTTCGGGCGGCATGCCCTCG
L122I	ATGCCGCCCGAAGCTG	CCAATACCGGTGCCAG

Table S2. Sequences of mutagenesis primers used for the construction of Est816 variants.Red letters indicate nucleotides that were exchanged.

I 122F	CTGGCACCGGTTTTGGCGAGGGC	CAGCTTCGGGCGGCATGCCCTCG
1.1221	ATGCCGCCCGAAGCTG	CCAAAACCGGTGCCAG
I 122V	CTGGCACCGGTTATGGCGAGGGC	CAGCTTCGGGCGGCATGCCCTCG
L122 I	ATGCCGCCCGAAGCTG	CCATAACCGGTGCCAG
T 100 A	CTGGCACCGGTGCTGGCGAGGGC	CAGCTTCGGGCGGCATGCCCTCG
LIZZA	ATGCCGCCCGAAGCTG	CCAGCACCGGTGCCAG
MOZE	GATCGGCGGATTCATCGCCATGC	GTTGCATGGCGATGAATCCGCCG
IV197F	AAC	ATC
Est816-	CG <u>GAATTC</u> ATGCCGCATGTAGAG	
EcoRI-F'	AACGACGG	
Est816-SacI-	C <u>GAGCTC</u> TCAGGACACCAATGAA	
R'	GCTTCTCGAGC	

 Table S3. Chiral HPLC methods and retention times for ethyl 2-arylpropionates.

List	Substrate	Method	Rt _(S) min	Rt _(R) min
1	1a	Chiralcel OJ-H, hexane/2-propanol (90 : 10) flowing at 0.7 mL min ⁻¹ , UV 214 nm	9.26	9.92
2	2a	Chiralcel OD-H, hexane/2- propanol (98 : 2) flowing at 0.7 mL min ⁻¹ , UV 214 nm	10.08	9.06
3	3a	Chiralcel OJ-H, hexane/2-propanol (99 : 1) flowing at 0.7 mL min ⁻¹ , UV 214 nm	8.29	10.30
4	4 a	Chiralcel OJ-H, hexane/2-propanol (99 : 1) flowing at 0.7 mL min ⁻¹ , UV 214 nm	27.29	28.79
5	5a	Chiralcel OD-H, hexane/2- propanol (99 : 1) flowing at 0.3 mL min ⁻¹ , UV 214 nm	28.70	29.85
6	6a	Chiralcel OJ-H, hexane/2-propanol (90 : 10) flowing at 0.7 mL min ⁻¹ , UV 214 nm	12.85	12.02
7	7a	Chiralcel OJ-H, hexane/2-propanol (99 : 1) flowing at 0.7 mL min ⁻¹ , UV 214 nm	9.28	10.75
8	8a	Chiralcel IG, hexane/2-propanol (90 : 10) flowing at 0.7 mL min ⁻¹ , UV 214 nm	12.17	13.30

4. spectral data

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.17 (m, 5H), 4.12 (qq, J = 10.8, 7.1 Hz, 2H), 3.70 (q, J = 7.2 Hz, 1H), 1.49 (d, J = 7.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.55, 140.72, 128.57, 127.46, 127.04, 60.70, 45.57, 18.59, 14.11.

2a

¹H NMR (400 MHz, CDCl₃) δ 7.73 – 7.62 (m, 3H), 7.41 (dd, J = 8.5, 1.7 Hz, 1H), 7.17 – 7.06 (m, 2H), 4.12 (qq, J = 10.8, 7.1 Hz, 2H), 3.92 – 3.74 (m, 4H), 1.57 (d, J = 7.2 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.70, 157.65, 135.88, 133.69, 129.29, 128.97, 127.11, 126.26, 125.92, 118.94, 105.64, 60.75, 55.30, 45.51, 18.62, 14.15.

¹H NMR (400 MHz, CDCl₃) δ 7.20 (d, J = 8.1 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 4.12 (qq, J = 10.8, 7.1 Hz, 2H), 3.67 (q, J = 7.2 Hz, 1H), 2.44 (d, J = 7.2 Hz, 2H), 1.84 (dp, J = 13.7, 6.7 Hz, 1H), 1.48 (d, J = 7.2 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.89 (d, J = 6.6 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 174.77, 140.43, 137.91, 129.28, 127.12, 60.62, 45.18, 45.05, 30.16, 22.38, 18.59, 14.12.

4a

¹H NMR (400 MHz, CDCl₃) δ 7.84 – 7.65 (m, 4H), 7.64 – 7.52 (m, 2H), 7.52 – 7.40 (m, 3H), 4.21 – 4.06 (m, 2H), 3.79 (q, *J* = 7.2 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 1.22 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.51, 174.06, 140.98, 137.90, 137.56, 132.47, 131.49, 130.06, 129.22, 128.93, 128.52, 128.29, 60.93, 45.44, 18.51, 14.12.

5a

¹H NMR (600 MHz, CDCl₃) δ 7.36 – 7.29 (m, 2H), 7.29 – 7.23 (m, 1H), 7.09 (tt, *J* = 7.5, 1.1 Hz, 1H), 7.06 – 6.96 (m, 4H), 6.87 (ddd, *J* = 8.1, 2.4, 0.9 Hz, 1H), 4.17 – 4.05 (m, 2H), 3.67 (q, *J* = 7.2 Hz, 1H), 1.47 (d, *J* = 7.2 Hz, 3H), 1.19 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 174.24, 157.45, 157.20, 142.74, 129.85, 129.80, 123.34, 122.39, 118.96, 118.24, 117.42, 60.86, 45.51, 18.53, 14.19.

¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.14 (m, 1H), 7.62 – 7.53 (m, 2H), 7.45 – 7.33 (m, 2H), 7.33 – 7.21 (m, 1H), 7.15 (dd, J = 8.0, 1.9 Hz, 1H), 4.35 (s, 2H), 4.22 – 3.96 (m, 2H), 3.70 (q, J = 7.2 Hz, 1H), 1.47 (d, J = 7.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.26, 173.88, 142.86, 140.20, 137.88, 136.15, 133.15, 132.48, 131.50, 131.44, 130.83, 128.64, 126.81, 126.33, 60.95, 51.05, 45.20, 18.54, 14.11.

7a

¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.50 (m, 2H), 7.48 – 7.14 (m, 5H), 7.14 – 7.08 (m, 1H), 4.25 – 4.03 (m, 2H), 3.74 (q, *J* = 7.2 Hz, 1H), 1.53 (d, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.99 (s), 160.78 (t, *J* = 225.2 Hz), 142.00 (d, *J* = 7.7 Hz), 135.56 (s), 130.76 (d, *J* = 4.0 Hz), 128.95 (d, *J* = 3.0 Hz), 128.43 (s), 127.76 (d, *J* = 13.6 Hz), 127.64 (s), 123.52 (d, *J* = 3.3 Hz), 115.23 (d, *J* = 23.7 Hz), 60.99 (s), 45.08 (s), 18.44 (s), 14.13 (s). ¹⁹F NMR (377 MHz, CDCl₃) δ -117.70.

8a

¹H NMR (400 MHz, CDCl₃) δ 8.23 (s, 1H), 7.94 (d, J = 1.4 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H), 7.36 – 7.13 (m, 4H), 4.26 – 3.97 (m, 2H), 3.86 (q, J = 7.1 Hz, 1H), 1.57 (d, J = 7.2 Hz, 3H), 1.26 – 1.17 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.15, 140.43, 139.28, 138.12, 125.73, 124.83, 124.25, 121.57, 120.55, 119.89, 119.59, 111.62, 109.57, 61.01, 46.01, 18.93, 14.16.

检测器A Ch1 214nm					
Peak[#]	RetTime[min]	Area[uV*s]	Area[%]		
1	9.510	53755	14.907		
2	10.311	306839	85.093		

1a

0				1 '	· ·
8	9	10		11	
检测器A	A Ch1 214nm				
Peak	#] RetTime[min]	Area[uV*s]	Area[%]		

Peak[#]	RetTime[min]	Area[uV*s]	Area[%]
1	9.065	7549592	88. 445
2	10.081	986297	11.555
总计			100.000

检测器A Ch	1 214nm		
Peak[#]	RetTime[min]	Area[uV*s]	Area[%]
1	8.300	10024514	89.983
2	10.288	1116000	10.017

mV

检测器A Ch1 214nm					
Peak[#]	RetTime[min]	Area[uV*s]	Area[%]		
1	8.472	2292484	26.915		
2	10.669	6225088	73.085		

3a

检测器A Ch	1 214nm		
Peak[#]	RetTime[min]	Area[uV*s]	Area[%]
1	27.222	32161637	60.318
2	28.830	21158831	39.682
总计			100.000

检测器A Ch1 214nm

Peak[#]	RetTime[min]	Height[uV]	Width[min]	Area[uV*s]	Area[%]
1	28.629	42013	0.478	1288796	96.293
2	29.821	1535	0.511	49611	3.707

mV

检测器A Ch1 214nm

Peak[#]	RetTime[min]	Height[uV]	Width[min]	Area[uV*s]	Area[%]
1	28.704	34711	0.468	1050856	42.638
2	29.846	44972	0.487	1413730	57.362

检测器A Ch1 214nm						
Peak[#]	RetTime[min]	Area[uV*s]	Area[%]			
1	12.011	16740178	89.929			
2	12.866	1874603	10.071			

检测器A Ch1 214nm

and the second sec					
Peak[#]	RetTime[min]	Height[uV]	Width[min]	Area[uV*s]	Area[%]
1	9.253	49704	0.172	607774	12.669
2	10.717	319819	0.204	4189503	87.331
	•				

mV

检测器A Ch1 214nm

Peak[#]	RetTime[min]	Height[uV]	Width[min]	Area[uV*s]	Area[%]
1	9.269	98038	0.164	1035567	99.887
2	10.718	126	0.170	1167	0.113

S16

mV

检测器A Ch	n1 214nm				
Peak[#]	RetTime[min]	Height[uV]	Width[min]	Area[uV*s]	Area[%]
1	12.336	389234	0.267	6730814	61.587
2	13. 490	216585	0.297	4198119	38.413

mV

检测器A Ch1 214nm

Peak[#]	RetTime[min]	Height[uV]	Width[min]	Area[uV*s]	Area[%]
1	12.347	113287	0.264	1946680	8.305
2	13.469	1121333	0.297	21494578	91.695

8a

S18

¹³C NMR of **2a**

¹H NMR of **4a**

S21

¹³C NMR of 5a

¹H NMR of **6a**

¹³C NMR of **6a**

S24

80 70 60 50 40 30

210 200 190 180 170 180 150 140 130 120 110 100 90 f1 (ppm)

¹H NMR of 8a

-2000

20

10

0 -10