Supporting Information

Exploring the formation of carbonates on La₂O₃ catalyst with OCM

activity

Cairu Guan ^{a,b,c}, Zebang Liu ^{a,b}, Danyu Wang ^a, Xiaohong Zhou ^{a,b}, Yaoqi Pang ^{a,b,c}, Na Yu ^a, Alexander P. van Bavel ^d, Evgeny Vovk ^a,Yong Yang* ^a

^a School of Physical Science and Technology, Shanghai Tech University, 393 Huaxia Middle Road, Shanghai, 201210, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China

^d Shell Technology Centre Amsterdam, P.O. Box 38000, 1030 BN Amsterdam, Netherlands.

* Corresponding author email: <u>yangyong@shanghaitech.edu.cn</u>

MS signal calibration of nearly pure (99%) CO₂ with low partial adsorption

The online CO_2 output flow rate during the adsorption experiment is generally estimated by the following equation:

$$[\text{CO2 out}] = \frac{\text{Sig CO2}}{\text{Sig Ar}} \times [\text{Ar}]$$
(eq. 1)

Where [Ar] denotes the molar flow of Ar, which is its MFC setting value. $[CO_{2 \text{ output}}]$ denotes that of the output CO₂, and CO_{2Sig} and Ar_{Sig} are the online MS signals of CO₂ and Ar output after fragmentation correction.

The MS sampling signal of amu 44 or amu 22 (double ionization of CO_2) will have no change upon 100% pure CO_2 adsorption experiment, since after partial adsorption the sampled output gas is still pure CO_2 . However, if a low concentration (1%) of Ar dilution is added, the relative Ar signal will increase upon partial uptake. In this way, in this experiment with online MS, 1% of Ar is mixed with high concentration CO_2 input flow to simulate the pure CO_2 adsorption.

In the experiment in Figure 6, the highest CO₂ uptake is about 3%. At the highest adsorption uptake, the CO₂ concentration changed from 99% (no adsorption) to about $(\frac{99-3}{100-3})^x$ 100%, or 98.97%. Its relative change is $(\frac{0.03\%}{99\%})^2$, which almost not affects the MS signal of amu 44. On the other hand, the Ar signal changes from 1% to $(\frac{1}{100-3})^x$ 100%. Following the same calculation, the Ar signal relative change is $(\frac{0.03\%}{1\%})^2$, or about 3%. This relative signal change from Ar baseline is almost 100 times higher than CO₂ and can be captured by MS.

Since the MS signal of CO_2 remains almost constant in this case, the CO_2 uptake can be also directly estimated only by the Ar MS signal just converting from its relative change scale normalized with its background signal (no adsorption). The advantage of this second approach is that there is no ionization difference between Ar and CO_2 need be considered. Fig.6 is plotted from eq. S1 and the calibration result is also strongly confirmed by the 2nd calibration method.

Figure S1. Nanorod (left) and commercial (right) La2O3 SEM image

Figure S2. The actual temperature profile of Figure 3

Figure S3. Heating in CO₂ to 600 °C, survey at 25 °C, 450 °C, 600 °C

Figure S4. Simultaneous obtained online MS and *in situ* XRD analysis of a) M-La₂O₃ and b) n-La₂O₃ samples during exposure to 99% CO₂ /1% Ar (10 sccm) flow for behavior comparison of CO₂ uptake and phase change. The phase changes from La₂O₃ (green) to La₂O₂CO₃ (red) are plotted by tableted XRD peak intensity curves in upper panels; the CO₂ uptakes are plotted in lower panels. The temperature profiles are plotted in all panels.

Only the pure CO₂ flow exposure results in complete phase changes for both *n*-La₂O₃ and *M*-La₂O₃. A much slower temperature profile is performed to obtain the details of these processes on the two samples by collecting the simultaneously La₂O₃ phase change (*in situ* XRD) and CO₂ loss (online MS) signals (Figure S4). To obtain relative CO₂ loss signal in MS, 1% Ar is mixed with pure CO₂ (99% CO₂ balanced with 1% Ar). The real time CO₂ loss rate is converted from the relative Ar signal intensity during this process. A brief description of this method is in the supporting information. Sample is first linearly heated in the CO₂ flow from room temperature to 400°C with the rate of 5°C/min. The heating rate is thus reduced to 2°C/min until the temperature reaches 550°C. After holding at 550°C for 1 hour, the sample is linearly heated to 600°C at the low heating rate of 2°C/min.

The phase change related CO₂ uptake is divided into three major steps for both samples. In the 1st step, both samples remain the original pure hexagonal La₂O₃ phases. Close inspect of MS data indicates a small CO₂ uptake as slight increase of signal from background. This indicates that there is a small CO₂ adsorption undergoing in this step but the formed carbonates grains are not large enough to be observed by XRD instrument, probably only surface carbonates species. The 2nd step of CO₂ uptake starts as the temperature approaches about 500°C. For both samples, three obvious changes correlating with transformation to bulk La₂O₂CO₃ phase initial in this step. These are including a sudden increase of the CO₂ uptake rates, a quick drop of La₂O₃ phase signal, and the rising of XRD intensity of La₂O₂CO₃. Interestingly, for both samples, the time points that XRD peak intensity of both La₂O₃ sample intensity reduce to zero also coincide with that the CO₂ uptake rates reach maximum level. So far the behavior of to La₂O₂CO₃ on both samples seems very similar. The CO₂ uptake and bulk La₂O₂CO₃ formation are not complete after the clearance of peaks in XRD patterns of La₂O₃. When the samples are hold at 550°C and heating to higher temperature, the 3^{rd} step observes the continued rising of XRD signal of La₂O₂CO₃ and the slow decrease of CO₂ uptake rates. In the third step, the CO₂ uptake over both samples are almost identical, the MS decay curves lasting about 3000 s before decreasing to zero, which is about 20 min before the finish of temperature holding at 550°C. The samples phase change behaviors are rather different. For *n*-La₂O₃ (figure 6), the XRD intensity of tetragonal (200) peak reaches ~50% of its maximum when La₂O₃ fully decomposes. Its intensity keeps increasing during the whole heating process, although relatively slowly. For *M*-La₂O₃ (Figure 6), the XRD intensity of hexagonal (110) peak reaches only about 25% of its maximum when La₂O₃ fully decomposes. The intensity keeps strongly increasing as the sample is heated to 550°C and hold for 1 hr. During the 2nd heating step to 600°C, the slope of XRD intensity is even sharper and the phase change is only stopped after the sample is hold at 600°C.

Figure S5. a) The bulk structure diagrams of $La_2O_2CO_3$ (hexagonal) and b) La_2O_3 , together with the c) La_2O_3 (011) and d) La_2O_3 (011) surface. The O_{6c} atom is the purple one.