

Progress and future challenges in passive NO adsorption over Pd/zeolite catalysts

Huawang Zhao^{a&}, Alexander J. Hill^{b&}, Lei Ma^c, Adarsh Bhat^b, Guohua Jing^{a}, Johannes W. Schwank^b*

a. Department of Environmental Science & Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, Fujian 361021, China

b. Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

c. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

& H.W. Zhao and A.J. Hill contributed equally. *Corresponding author: zhoujing@hqu.edu.cn.

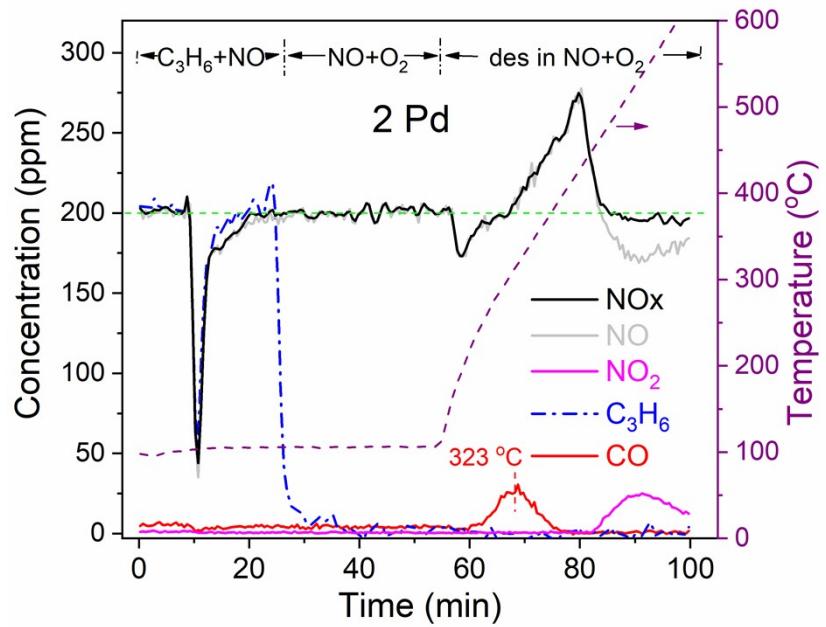


Fig. S1. NO + C_3H_6 co-adsorption and release on Pd/SSZ-13 with Pd loading of 2 wt. %; Feed gas: 200 ppm NO, 200 ppm C_3H_6 (when applied), 10 % O_2 , 5 % CO_2 , 5 % H_2O , balanced with N_2 .