Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting information for

Structural insight into an atomic layer deposition (ALD) grown Al₂O₃ layer on Ni/SiO₂: impact on catalytic activity and stability in dry reforming of methane

Sung Min Kim^a, Andac Armutlulu^a, , Wei-Chih Liao^b,

Davood Hosseini^a, Dragos Stoian^c, Zixuan Chen,^a Paula M. Abdala^a, Christophe Copéret^b and Christoph Müller^{a,*}

^a Department of Mechanical and Process Engineering, ETH Zurich, Leonhardstrasse 27, 8092 Zurich, Switzerland

^b Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir Prelog Weg 1-5, 8093 Zurich, Switzerland

^c Swiss–Norwegian Beamlines, ESRF, BP 220, Grenoble, 38043, France

*Corresponding author. e-mail: muelchri@ethz.ch

Table of content

Table S1.calcination anphase ^b	The coordination ^a of Al sites in Al (0.4 nm)-Ni/SiO ₂ and Al (4.0 nm)-Ni/SiO ₂ after d NH ₃ -treatment, and the distribution of Al ₂ O ₃ and amorphous aluminosilicate (AAS)
Table S2. (mol%) for the h of TOS)	Ni K-edge XANES-based linear combination fitting (LCF) quantification of NiAl ₂ O ₄ e benchmarks and Al ₂ O ₃ coated Ni-based DRM catalysts after calcination and DRM (10
Figure S1. BM31 beamli	Schematic of the experimental setup for combined <i>in situ</i> XAS-XRD measurements ne, SNBL at ESRF
Figure S2.	HAADF STEM with EDX analysis of Al (4.0 nm)-Ni/SiO ₂ calcined at 800 $^\circ$ C4
Figure S3. Ni/SiO ₂ , and c	(a) N ₂ isotherm and (b) BJH pore size of calcined Ni/SiO ₂ , as-deposited Al (4.0 nm)- calcined Al (4.0 nm)-Ni/SiO ₂
Figure S4. Ni/SiO ₂ , and A	TEM images and particle size distribution of reduced Ni/Al ₂ O ₃ , Ni/SiO ₂ , Al (0.4 nm)- Al (4.0 nm)-Ni/SiO ₂
Figure S5. (4.0 nm)-SiO ₂ for compariso	Ni K-edge XANES spectra for calcined Ni/SiO ₂ , Ni/Al ₂ O ₄ , Al (4.0 nm)-Ni/SiO ₂ , Ni/Al , Al (4.0 nm)-Ni/Al ₂ O ₃ , and Ni/Al (4.0 nm)-Al ₂ O ₃ . NiO and NiAl ₂ O ₄ references plotted n
Figure S6. Al (0.4 nm)-N	Solid-state ²⁷ Al NMR spectra of (a) γ -Al ₂ O ₃ after calcination and NH ₃ -treatment, and i/SiO ₂ and Al (4.0 nm)-Ni/SiO ₂ after (b) NH ₃ adsorption and (c) reduction
Figure S7.	NH ₃ -TPD profile of (a) reference and (b) calcined materials7

Catalyst	Treatment	Al coordination ^a			Al ₂ O ₃		AAS			Al content ^c [mmol/g]	
Cuturyst		Al ^{IV}	Al ^v	Al ^{VI}	Al ^{IV}	Al ^{VI}	Al ^{IV}	Al ^v	Al ^{VI}	Al ₂ O ₃	AAS
	Calcined	28	3	69	- 28	69	-	-	-	100	-
γ -Al ₂ O ₃	NH ₃ -treated	28	3	69							
Al (0.4 nm)-	Calcined	22	36	42	5	11	18	36	31	6 (16)	34 (84)
Ni/SiO ₂	NH ₃ -treated	48	41	11							
Al (4.0 nm)-	Calcined	35	41	24	10	23	25	41	1	125	253
Ni/SiO ₂	NH ₃ -treated	39	38	23						(33)	(67)

Table S1.The coordinationa of Al sites in Al (0.4 nm)-Ni/SiO2 and Al (4.0 nm)-Ni/SiO2 after calcination
and NH3-treatment, and the distribution of Al2O3 and amorphous aluminosilicate (AAS) phaseb.

^aThe coordination of Al sites was fitted with the CzSimple model using the DMFit software with the assumption of all Al sites detected by ²⁷Al MAS NMR.^b The Al^{IV} and Al^{VI} sites in Al₂O₃ was calculated using the coordination of Al^{VI} sites after NH₃ treatment, whereby a constant 3:7 ratio is available in γ -Al₂O₃ regardless of calcination and NH₃ treatments. The Al^{IV}, Al^V, and Al^{VI} sites in AAS were calculated by the subtraction of Al^{IV} and Al^{VI} in Al₂O₃. ^cAl content in calcined Al (0.4 nm)-Ni/SiO₂ and Al (4.0 nm)-Ni/SiO₂ was quantified by combination of elemental analysis and ²⁷Al NMR with the assumption that all Al species can be detected by ²⁷Al NMR. The parenthesis represented the relative ratio between Al₂O₃ and AAS

Table S2.Ni K-edge XANES-based linear combination fitting (LCF) quantification of NiAl2O4 (mol%)
for the benchmarks and Al2O3 coated Ni-based DRM catalysts after calcination and DRM (10
h of TOS).

Catalyst	Calcination ^a	After DRM ^b
Ni/SiO ₂	0	0
Ni/Al ₂ O ₃	100	10
Al (0.4 nm)-Ni/SiO ₂	0	0
Al (4.0 nm)-Ni/SiO ₂	30	0
Al (4.0 nm)-Ni/Al ₂ O ₃	100	9
Ni/Al (4.0 nm)-SiO ₂	0	0
Ni/Al (4.0 nm)-Al ₂ O ₃	100	10

^aThe benchmark catalysts Ni/SiO₂ and Ni/Al₂O₃ were calcined at 300 °C, while the ALD Al₂O₃-coated Ni catalysts were calcined at 800 °C. ^bThe catalysts were completely reduced to metallic Ni⁰ at 400–800 °C under 10 vol.% H₂/N₂ prior to DRM tests. The amount of NiAl₂O₄ was quantified after 10 h TOS under DRM conditions at 700 °C.

Figure S1. Schematic of the experimental setup for combined *in situ* XAS-XRD measurements BM31 beamline, SNBL at ESRF.

Figure S2. HAADF STEM with EDX analysis of Al (4.0 nm)-Ni/SiO₂ calcined at 800 °C

Figure S3. (a) N₂ isotherm and (b) BJH pore size of calcined Ni/SiO₂, as-deposited Al (4.0 nm)-Ni/SiO₂, and calcined Al (4.0 nm)-Ni/SiO₂.

Figure S4. TEM images and particle size distribution of reduced Ni/Al₂O₃, Ni/SiO₂, Al (0.4 nm)-Ni/SiO₂, and Al (4.0 nm)-Ni/SiO₂.

Figure S5. Ni K-edge XANES spectra for calcined Ni/SiO₂, Ni/Al₂O₄, Al (4.0 nm)-Ni/SiO₂, Ni/Al (4.0 nm)-SiO₂, Al (4.0 nm)-Ni/Al₂O₃, and Ni/Al (4.0 nm)-Al₂O₃. NiO and NiAl₂O₄ references plotted for comparison.

Figure S6. Solid-state ²⁷Al NMR spectra of (a) γ-Al₂O₃ after calcination and NH₃-treatment, and Al (0.4 nm)-Ni/SiO₂ and Al (4.0 nm)-Ni/SiO₂ after (b) NH₃ adsorption and (c) reduction.

Figure S7. NH₃-TPD profile of (a) reference and (b) calcined materials.

Figure S8. Combined (a) *in situ* Ni K-edge XANES and (b) *in situ* XRD of calcined Ni/SiO₂ and calcined Al (4.0 nm)-Ni/SiO₂ during reduction. The arrows in (a) indicate the change of XANES upon reduction. The dashed line in (b) represents (111), (200) and (222) Bragg reflections of Ni.

Figure S9. HAADF-STEM images with EDX mapping for reduced Al (4.0 nm)-Ni/SiO₂.

Figure S10. Ex situ Ni K-edge XANES for spent catalysts after 10 h of DRM and references.