Revisiting Trends in the Exchange Current for Hydrogen Evolution

Timothy T. Yang¹, Rituja B. Patil², James R. McKone², and Wissam A. Saidi¹ ¹Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15260, United States ²Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260, United States *To whom correspondence should be addressed: alsaidi@pitt.edu

Computational Details

We use the Vienna Ab Initio Simulation Package (VASP) for the first-principles density functional theory (DFT) calculations. We use the Perdew-Burke-Ernzerhof (PBE) exchange-correlational functional and Revised Perdew-Burke-Ernzerhof (RPBE) to solve the Kohn-Sham equations within periodic boundary conditions, and the PAW pseudopotentials to describe electron-nucleus interactions.¹⁻⁴ The dDsC dispersion correction is used for the Van der Waals (VdW) corrections. The electronic self-consistent loops are terminated within energy-change tolerance of 1×10⁻⁶ eV. The periodic slab models are 3×3 supercells cleaved using the calculated bulk structures in Table 1 with a thickness of at least 10 Å. We used 15 Å vacuum perpendicular to the surfaces. The relaxations are done by fixing at least two layers in bulk position and relaxing the top three layers for all surfaces. We use the most stable terminations: for the metals in Fm3m and P6₃/mmc phase⁵⁻⁶, we use (111) and (001), respectively, (111) for Bi and In surfaces⁷, and (110) for Mo surface.⁸

The calculated free energy (ΔG_H) values in Table 2 corresponds to the hydrogen coverages of 1/9 ML or 1 ML for the surfaces with positive or negative ΔG_H , respectively. A single water layer is added to test the solvation effects. We find that the effects on adsorption energies are less than 0.05 eV for all the metals therefore not included. Comparing all the ΔG_H values for a metal, it is observed that the PBE results are systematically ~0.15 eV less than the results obtained from RPBE for the cases with and without VdW corrections. For each functional, the VdW corrections amounts to less than 0.06 eV. In summary, the trends we show in Figure 3 will be similar for the four cases of ΔG_H calculations.

Table S1. Bulk structures obtained with PBE and RPBE functionals.					
	K-points Phase PBE RPBE				
Ag	12×12×12	Fm3̄m	a=b=c=2.93 α=β=γ=60	a=b=c=2.97 α=β=γ=60	
Au	12×12×12	Fm3m	a=b=c=2.94 α=β=γ=60	a=b=c=2.97 α=β=γ=60	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Co $12 \times 12 \times 12$ P63/mmc $a=b=2.45; c=3.95$ $\alpha=\beta=90; \gamma=120$ $a=b=2.47; c=3.98$ $\alpha=\beta=90; \gamma=120$ Cu $12 \times 12 \times 12$ Fm3m $a=b=c=2.57$ $a=b=c=2.60$ $a=b=c=2.60$	
Co12×12×12Po3/mmc $\alpha=\beta=90; \gamma=120$ $\alpha=\beta=90; \gamma=120$ Cu12×12×12Fm3m $a=b=c=2.57$ $a=b=c=2.60$	
Cu 12×12×12 Fm3m a=b=c=2.57 a=b=c=2.60	
$\alpha = \beta = \gamma = 60$ $\alpha = \beta = \gamma = 60$	
a=b=c=8.49 a=b=c=8.61	
a=b=c=2.74 a=b=c=2.75	
$\alpha = \beta = \gamma = 60$ $\alpha = \beta = \gamma = 60$	
Ma 99.9 Im ² m a=b=c=2.73 a=b=c=2.74	
$\alpha = \beta = \gamma = 109.471$ $\alpha = \beta = \gamma = 109.471$	
Ni 12x12x12 Em2m a=b=c=2.48 a=b=c=2.50	
$\alpha = \beta = \gamma = 60$ $\alpha = \beta = \gamma = 60$	
Dd 12,12,12 Em ² m a=b=c=2.78 a=b=c=2.81	
$\alpha = \beta = \gamma = 60$ $\alpha = \beta = \gamma = 60$	
Dt 12:12:12 Em2m a=b=c=2.81 a=b=c=2.82	
$\alpha = \beta = \gamma = 60$ $\alpha = \beta = \gamma = 60$	
Bo 12x12x12 B6/mmo a=b=2.77 c=4.48 a=b=2.78; c=4.50	
$\alpha = \beta = 90; \gamma = 120$ $\alpha = \beta = 90; \gamma = 120$	
Ph 12x12x12 Fm2m a=b=c=2.70 a=b=c=2.72	
$\alpha = \beta = \gamma = 60 \qquad \alpha = \beta = \gamma = 60$	
Bu 12x12x12 D6c/mma a=b=2.72; c=4.28 a=b=2.73; c=4.30	
$\alpha = \beta = 90; \gamma = 120$ $\alpha = \beta = 90.000; \gamma = 120$)
Nb 12x12x12 lm ² m a=b=c=2.88 a=b=c=2.89	
$\alpha = \beta = \gamma = 109.471$ $\alpha = \beta = \gamma = 109.471$	
a=b=c=2.75 a=b=c=2.76	
$\alpha = \beta = \gamma = 109.471$ $\alpha = \beta = \gamma = 109.471$	

Table S2. The calculated $\Delta G_{\rm H}$ from two functionals with and without VdW correction.						
	PBE	RPBE	PBE with VdW	RPBE with VdW		
Ag	0.416	0.565	0.381	0.527		
Au	0.418	0.574	0.388	0.532		
Bi	1.040	1.127	1.004	1.099		
Cd	1.051	1.038	1.058	1.031		
Co (Fm3m)	-0.355	-0.202	-0.411	-0.252		
Co (P6 ₃ /mmc)	-0.352	-0.201	-0.407	-0.250		
Cu	0.040	0.188	-0.002	0.147		
In	0.847	0.948	0.813	0.912		
lr	-0.208	-0.081	-0.273	-0.136		
Мо	-0.453	-0.321	3.620	-0.352		

Ni	-0.388	-0.231	-0.445	-0.280
Pd	-0.286	-0.123	-0.359	-0.176
Pt	-0.192	-0.038	-0.232	-0.082
Re	-0.293	-0.154	-0.333	-0.195
Rh	-0.270	-0.116	-0.318	-0.159
Ru	-0.330	-0.180	-0.375	-0.220

Table S3-1. The experimental $\log (j_0/(A \cdot cm^2))$ from Ref⁹ (Nørskov Data) is compared with the calculated $\log (j_0/(A \cdot cm^2))$ using Eq. (1) with constant $k_0 = 200 \text{ s}^{-1}$ (Nørskov Model) and with $k_0 = \exp (23.16 |\Delta G_H/eV| + 3.17)$ (Present Model).

1000el) and $1000el$	wodel) and with $k_0 = \exp(23.10[\Delta G_{\rm H}/ev] + 3.17)$ (Fiesent Model).						
	Nørskov Data	Nørskov Model	Present Model				
Pt	-3.1	-1.95	-2.58				
Pt	-2.63	-1.95	-2.58				
Pt	-3.34	-1.95	-2.58				
lr	-3.7	-1.93	-2.55				
lr	-3.46	-1.93	-2.55				
Pd	-3	-2.85	-2.87				
Pd	-3	-2.85	-2.87				
Rh	-3.6	-2.35	-2.67				
Rh	-3.22	-2.35	-2.67				
Ni	-5.21	-5.09	-3.70				
Ni	-5.2	-5.09	-3.70				
Со	-5.32	-5.41	-3.82				
W	-5.9	-11.26	-6.25				
W	-5.9	-11.26	-6.25				
Cu	-5.37	-5.41	-4.42				
Мо	-7.07	-10.25	-5.84				
Re	-2.87	-4.85	-3.66				
Nb	-6.8	-10.80	-6.09				
Au	-6.6	-9.89	-6.29				
Au	-6.8	-9.89	-6.29				
Au	-5.4	-9.89	-6.29				
Ag	-5	-10.90	-6.69				
Ag	-7.85	-10.90	-6.69				

Table S3-2. The experimental $\log (j_0/(A \cdot cm^2))$ from Table 5 (Present Data) is
compared with the calculated $\log (j_0/(A \cdot cm^2))$ with $k_0 = \exp (23.16|\Delta G_H/eV| + 3.17)$
(Present Model). The first column label reflects experimental setup. The "Present
Model" utilize slabs of well-defined terminations as described before.Model" utilize slabs of well-defined terminations as described before.Present DataPresent ModelPt (111)-3.35-2.83

-1.80

-2.83

Pt/C

Pt/C	-0.92	-2.83
lr	-1.44	-3.15
lr	-1.89	-3.15
Pd	-3.72	-3.44
Pd	-2.52	-3.44
Pd	-3.08	-3.44
Rh/C	-2.28	-3.30
Rh/C	-2.17	-3.30
Ru	-2.35	-3.71
Cu	-6.84	-4.13
Со	-5.44	-3.84
Ni	-5.59	-4.04
Au (111)	-6.60	-6.84
Au (111)	-6.47	-6.84
Poly Au	-6.85	-6.84
Re	-5.90	-3.56
Re	-6.00	-3.56
Bi	-9.10	-11.05
Cd	-10.77	-10.24
In	-10.82	-9.54

Table S4. The data used in Figure 3 in the main paper. The experimental j_0 s are collected from reliable literatures listed in Table S4. The calculated ln (k_0) and ΔG_H are obtained using Eq. (1) and Eq. (2), respectively, in the main document. The area is determined from the structures obtained using RPBE functional listed in Table S1.

	$\Delta G_{\rm H}$	Exp. j ₀	log j ₀	ln (k ₀)	Area (cm ²)	# sites in Area	Ref.
Pt (111)	-0.082	4.50 × 10 ⁻⁴	-3.35	3.87	6.20 × 10 ⁻¹⁵	9	10
Pt/C	-0.082	1.60 × 10 ⁻²	-1.80	7.43	6.20 × 10 ⁻¹⁵	9	11
Pt/C	-0.082	1.20 × 10 ⁻¹	-0.92	9.46	6.20 × 10 ⁻¹⁵	9	12
lr	-0.136	3.60 × 10 ⁻²	-1.44	10.27	5.89 × 10 ⁻¹⁵	9	12
lr	-0.136	1.28 × 10 ⁻²	-1.89	9.23	5.89 × 10 ⁻¹⁵	9	11
Pd	-0.176	1.90 × 10 ⁻⁴	-3.72	6.60	6.16 × 10 ⁻¹⁵	9	13
Pd	-0.176	3.00 × 10 ⁻³	-2.52	9.37	6.16 × 10 ⁻¹⁵	9	14
Pd	-0.176	8.4 × 10 ⁻⁴	-3.08	8.08	6.16 × 10 ⁻¹⁵	9	11
Rh/C	-0.159	5.20 × 10 ⁻³	-2.28	9.20	5.77 × 10 ⁻¹⁵	9	12
Rh/C	-0.159	6.70 × 10 ⁻³	-2.17	9.45	5.77 × 10 ⁻¹⁵	9	11
Ru	-0.220	4.50 × 10 ⁻³	-2.35	11.40	5.81 × 10 ⁻¹⁵	9	15
Cu	0.147	1.45 × 10 ⁻⁷	-6.84	0.34	5.25 × 10 ⁻¹⁵	1	16
Со	-0.252	3.60 × 10 ⁻⁶	-5.44	5.31	4.70 × 10 ⁻¹⁵	9	17
Ni	-0.280	2.60 × 10 ⁻⁶	-5.59	6.09	4.89 × 10 ⁻¹⁵	9	18
Au (111)	0.532	2.50 × 10 ⁻⁷	-6.60	16.05	6.86 × 10 ⁻¹⁵	1	19

Au (111)	0.532	3.38 × 10 ⁻⁷	-6.47	16.35	6.86 × 10 ⁻¹⁵	1	20
Poly Au	0.532	1.40 × 10 ⁻⁷	-6.85	15.47	6.86 × 10 ⁻¹⁵	1	19
Re	-0.195	1.25 × 10 ⁻⁶	-5.90	2.30	6.04 × 10 ⁻¹⁵	9	21
Re	-0.195	1.00 × 10 ⁻⁶	-6.00	2.07	6.04 × 10 ⁻¹⁵	9	22
Bi	1.099	8.00 × 10 ⁻¹⁰	-9.10	33.10	1.65 × 10 ⁻¹⁴	1	23
Cd	1.031	1.7 × 10 ⁻¹¹	-10.77	25.83	7.49 × 10 ⁻¹⁵	1	24
In	0.912	1.5 × 10 ⁻¹¹	-10.82	21.33	9.30 × 10 ⁻¹⁵	1	25

Selection of HER Exchange Current Densities from the Research Literature

Experimental exchange current densities (Table 4) were collected from prior literature reports that showed evidence for a high level of analytical rigor. Each of the following were treated as exclusion criteria by incrementally decreasing a "rigor score" for the associated report:

- Electrolytes were not pre-purified or noted to be of highest available commercial purity
- Counter electrodes comprised materials with higher HER activity than the working electrode; these can dissolve and re-deposit on the working electrode and significantly modify its catalytic activity
- Electrode cleaning protocols (if used) involved exclusions to potentials outside the stability limits for the noted pure metal in strong acid conditions
- Evidence that the working electrode was not completely flat (e.g., roughness factor
 ≥ 2) and the surface roughness was not taken into consideration in the reported
 exchange current density
- Tafel plots used for kinetic analysis did not give rise to clearly linear behavior over at least 1 order of magnitude in current density
- Mass transfer limitations convoluted kinetic analysis; note this is especially important for high-performing catalysts like Pt, whose HER activity is so high that conventional hydrodynamic methods like RDE cannot achieve a pure kinetic limit
- Control measurements using comparatively well understood HER catalysts (usually Pt) exhibited excessively low or inconsistent catalytic activity

HER measurements exhibiting one of the deficiencies listed above very often suffered from several, which resulted in a subset of measurements with high rigor and another subset with relatively low rigor. Reports with high rigor are shown in the table, and these were used for the regression analyses in the main text. Notes have also been included in Table 4 summarizing the associated experimental protocols, where the bold text notes relatively minor experimental concerns or incomplete information. Mo and W entries are included in Table 4, but these metals were not included in our analysis because neither is thermodynamically stable as a zerovalent metal under HER conditions in acid; accordingly, DFT-calculated H-binding energies are not directly comparable to experimental results, which most likely involve HER on partially oxidized Mo and W sites.

Several other metals (e.g., Ni and Co) are also only stable in an oxidized form at applied potentials near 0 V vs RHE in strong acid solution, but the oxidation products are soluble (and therefore do not irreversibly modify the electrode surface) and rigorous measurements can be executed over sufficiently negative applied potentials to maintain a metallic composition.

Table S5.	Table S5. The collected exchange current densities from experiments with comments.					
Electrode	Reported j ₀ (A/cm ²)	Electrolyte	Temperature	Reference		
Pt (111)	4.5×10 ⁻⁴					
Pt (100)	6.0×10 ⁻⁴	0.05 M H ₂ SO ₄	303 K	10		
Pt (110)	9.8×10 ⁻⁴					
 Studied d 	lifferent crystal fa	cets of Pt at different tem	peratures			
 Single cry 	stal electrodes t	ested, RDE measurement	t			
Low elect	Low electrolyte concentration chosen to be able to clearly distinguish hydrogen activity					
Electrode	surface protecte	ed by a drop of water, luge	gin capillary for reference	electrode to		
	contamination		ale a vera ta alata vera in a a ala			
HUPD cn Tofol plot	aracterization co	rrelated to the theoretical	charge to determine ads	orption layers		
 Talel plot Exchange 	s determined from	m the kinetically limited re	gion			
• Exchange	still contain cor	s obtained from diffusion	anzalion region			
• J_0 might						
Pt/C	1.6×10 ⁻²	0.2 M H ₃ PO ₄	293 K	11		
 Studied p 	recious metal ca	talysts at different pHs				
Commerce	cial powders teste	ed, RDE measurement				
Luggin ca	apillary, Pt counte	er				
Performe	ed CVs in 0.1 M	KOH prior to testing at o	different electrolytes (co	ontamination		
risk)						
ECSA de	termined from H	JPD peaks in 0.1 M KOH				
• ECSA ob	tained from HU	PD is 1.6 times lower the	an that obtained by CO-	stripping		
Exchange	e current densitie	s obtained from Butler Vo	ort limited	the		
measurer		imp, may sun de transpo	on minied			
Pt/C	1.2×10 ⁻¹	0.1 M HCIO4	313 K	12		
 Studied p 	recious metal ca	talysts at different temper	atures			
Commerce	cial powders were	e tested in H2 pump config	guration (speeds up mass	s transfer)		
Pt/C cour	nter/reference ele	ectrode, scrupulous cell cl	eaning			
 ECSA calculated by CO-stripping at 293 K are consistent with TEM analysis 						
• j_0 values were calculated by Butler Volmer and micro-polarization region, and was within 10						
% error						
Ir/C	3.6×10 ⁻²	0.1 M HCIO4	313 K	12		
Studied p	precious metal ca	talysts at different temper	atures	<u> </u>		
Commerce	cial powders were	e tested in H ₂ pump confid	guration			
Pt/C counter/reference electrode, rigorous cell cleaning						

 ECSA calc j₀ values v nearly same 	culated by CO-st vere calculated b ne. Oxide coveri	ripping at 293 K are cons by Butler Volmer and the ng did not have a huge in	sistent with TEM analysis micro-polarization region fluence.	and were
Ir/C Commerci	1.28×10 ⁻² al powders teste	0.2 M H ₂ SO ₄ ed, RDE measurement	293 K	11
 Luggin cap Performed ECSA dete ECSA obta Exchange measurem 	billary, Pt count d CVs in 0.1 M I ermined from HU ained from HUPI current density eents from H ₂ -pu	er KOH prior to testing at o JPD peaks in 0.1 M KOH D is almost same as that values obtained from But mp; may still be transpo	different electrolytes obtained by CO-stripping ler Volmer, are consisten ort limited) t with the
Pd	1.9×10 ⁻⁴	0.5 M H ₂ SO ₄	Not mentioned	13
Current n ECSA calo Linear Taf	ormalization no culated from C _{dl} el fitting	ot mentioned, appears to	be from electrode area	
Pd/C	3.0×10 ⁻³	0.1 M HCIO4	313 K	12
j ₀ values v nearly san	vere calculated b ne. Hydride cove	by Butler Volmer and the pring did not have a signif	micropolarization region icant influence.	and were
Pd/C	8.4×10 ⁻⁴	0.1 M HCIO4	293 K	11
Luggin cap Performed ECSA dete ECSA obt stripping j ₀ values c	billary, Pt count d CVs in 0.1 M I ermined from Pd ained from HUI obtained from Bu	er KOH prior to testing at o IO peaks in 0.1 M KOH PD is slightly lower (by utler Volmer, consistent w	different electrolytes 1.2 times) than that obt ith the measurements fro	ained by CO- om H₂-pump
Rh/C	5.2×10 ⁻³	0.1 M HCIO4	313 K	12
Commerci Pt/C coun ECSA calc j_0 values v nearly san	al powders were ter/reference el culated by CO-st vere calculated b ne. Oxide coveri	e tested in H ₂ pump config lectrode, rigorous cell cle ripping at 293 K are cons by Butler Volmer and the ng did not have a signific	guration eaning sistent with TEM analysis micropolarization region ant influence.	and were
Rh/C	6 7~10-3		203 K	11
Commerci Luggin cap	al powder tested billary, Pt count	d, RDE measurement er	different electrolytes	<u> </u>

Currents	normalized by EC	CSA measured in 0.1 M K	ЮН		
• ECSA ob	stained from HUI	PD is 1.8 times lower th	an that obtained by CO-	stripping	
Exchange current density values obtained from Butler Volmer, are consistent with the					
measurer	nents from H ₂ -pu	imp			
Ru	4.5×10 ⁻³	1M HCI + NaCI	298 K	15	
Studied Ru cylinder, mounted on ptfe cup					
Pt count	er, separated fror	m working electrode using	g frit		
 Pre-elect 	rolysis performed	but conditions are uncl	ear (pre-electrolysis impl	ies rigorous	
purificatio	n)				
After pre-	electrolysis poter	ntial sequence of +1 V vs	RHE for 10 s followed by	-1 V for 10	
observer	to be -1 V vs R	s with final cathodic pulse	for to minutes. Rest po	ential was	
00501700					
Cu	1.45×10 ⁻⁷	0.1 N HCI	Not mentioned	16	
 Wire worl 	king electrode				
Graphite	counter				
 Pre-elect 	rolysis was perfor	rmed for several hours; H	CI electrolyte may allow	<i>i</i> for some Cu	
dissoluti	on				
 Statistica 	I analysis include	d			
Со	3.6×10⁻ ⁶	1 M H ₂ SO ₄	293 K	26	
Studied r	od electrode, elec	ctrolytically polished in H ₃	PO ₄		
Detailed	cleaning procedu	re followed			
Cathodica	ally pre-polarized	starting from low current	density		
 Overpote 	ntial increased by	y applying cathodic currer	nt or with several hours of	electrolyte	
contact					
 Also calc 	ulated Tafel slope	e for the dissolution proce	ess, consistent with prior l	iterature	
Ni	2.6×10 ⁻⁶	0.5 M H ₂ SO ₄	295 K	18	
 Studied e 	ectrodeposited N	Ni as control, Ni could be	coated with Ni ²⁺ compo	ounds	
 Pt count 	er separated from	n main cell using glass frit	t, argon purge		
 Electrode 	was polarized at	t HER potentials to remov	e surface oxides		
 Tafel plot 	measured in kine	etically controlled regime			
 Tafel slo 	pe is higher that	n theoretical value; attri	buted to Ni oxidation		
• j_0 obtaine	ed from tatel plot				
Au <u>(11</u> 1)	2.5×10 ⁻⁷				
Au (100)	0.5×10 ⁻⁷	0.1 M HCIO4	Not mentioned	19	
Au (110) 0.3×10 ⁻⁷					
Studied single crystals with different crystal facets					
Hanging meniscus rotating disc technique, nitrogen purge, Au counter electrode					
 Surface of 	of electrode protect	cted with electrolyte drop			
HER activ	vity was independ	dent of the potential histor	ry (scanning even to oxid	ation	
potentials	s), contrary to liter	rature, owing to cleaner s	urtaces and solutions		
 Did not document detailed cell cleaning protocols 					

 Tafel slope in the low potential region is reported (< 150 mV) 					
Au (111) 3.38×10 ⁻⁷	0.5 M H ₂ SO ₄	Not mentioned	20		
Studied single crystal as a	control				
Pt counter, nitrogen purge, hanging meniscus					
Current normalized to g	 Current normalized to geometric area; no ECSA 				
Poly Au 1.40×10 ⁻⁷	0.1 M HCIO4	Not mentioned	19		
 Hanging meniscus rotating disc technique, nitrogen purge, Au counter electrode 					
Surface of electrode prote	ected with electrolyte drop				
HER activity was indepen	dent of the potential histo	ry (scanning even to oxid	ation		
potentials) owing to clean	er surfaces and solutions				
Did not document detail Tafel along in the low not	ed cell cleaning protoco) S \d (< 150 m\/)			
• Tatel slope in the low po	stential region is reporte	a (< 150 mv)			
Re 1.25×10 ⁻⁶	0.5 M H ₂ SO ₄	298 K	21		
Polished wire working ele	ctrode				
• Pt counter, hydrogen pur	ge				
Native surface oxide form	ation was minimized by p	olarizing at -0.4 V vs NHE	=		
Tafel fit included narrow	range at low overpoten	ntial (-0.11 to -0.2 V vs N	HE)		
Re 1×10 ⁻⁶	0.5 M H ₂ SO ₄	298 K	22		
Polished wire working ele	ctrode				
• Pt counter, hydrogen pur	ge				
• Polarized at -0.1 V vs RH	E, claim to have metallic F	Re			
Current normalized to g	eometric area; no ECSA				
•					
Cd 1.7×10 ⁻¹¹	0.5 N H ₂ SO ₄	Not mentioned	24		
Metal wire working electr	ode				
Heated electrode in hydro	ogen				
Detailed cleaning procedu	are followed				
Electrolyte was purged wi	th pre-purified nitrogen to	remove excess oxygen a	and then purged		
with hydrogen					
Electrolyte was further pu	rified by pre-electrolysis a	t 1 mA/cm ² for 15 – 20 ho	ours		
Bi 8×10 ⁻¹⁰	4.8 M H ₂ SO ₄	Not mentioned	23		
Polished metal wire worki	ng electrode				
Pt counter electrode	Pt counter electrode				
 Held the potential at HER potential for 10 mins prior to analysis 					
 Tafel plot measured in kin 	etically controlled regime				
In 1.51×10 ⁻¹¹	0.1 M HCIO4	303 K	25		
Cylindrical working electro	ode				
Electropolished at negative	e potential to remove oxid	de layer before analysis			
Pt counter and reference electrode, Luggin capillary used					

• Varied electrode treatment conditions and electrolyte concentration

Table S6. Ten best models identified by SISSO. Primary features used are atomic radius (*R*), atomic number (N), atomic mass (M) period in Periodic Table (P), metal density (ρ), work function (ϕ), electron affinity (E_A), ionization energy (*I*), Pauling electronegativity (χ), and hydrogen adsorption energy (ΔG_H).

SISSO Model	r ²
$((\chi + (\Delta G_{\rm H} + \chi)) + ((P\Delta G_{\rm H})(\Delta G_{\rm H}/\chi)))$	0.9795
$(((N\chi)(\chi/M))+((\Delta G_H E_A)(\Delta G_H/\chi)))$	0.9789
$(((PR)(P/M))((PR)(\Delta G_{H}+\chi)))$	0.9782
$(((M+N)(\chi/M))+((P\Delta G_H)(\Delta G_H/\chi)))$	0.9775
$((\chi(R\chi))+((R\Delta G_{\mathrm{H}})(\Delta G_{\mathrm{H}}+E_{A})))$	0.9768
$(((\Delta G_{\rm H} + \chi)(\Delta G_{\rm H}/\chi))((\Delta G_{\rm H}/\chi) + (\chi/\Delta G_{\rm H})))$	0.9766
$((R(\Delta G_{\mathrm{H}}+\chi))+((R\Delta G_{\mathrm{H}})(\Delta G_{\mathrm{H}}/\chi)))$	0.9762
$(((\Delta G_{\rm H} + \phi)(\chi/\phi))/((\chi/\phi) + (\phi/\chi)))$	0.9759
$(((R\Delta G_{\mathrm{H}})(\Delta G_{\mathrm{H}}+E_{A}))+((R\chi)(\Delta G_{\mathrm{H}}+\chi)))$	0.9753
$((\Delta G_{\rm H}(\Delta G_{\rm H}+\chi))(({\sf EA}/\chi)+(\chi/\Delta G_{\rm H})))$	0.9751

References

1. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. *Phys. Rev. B* **1993**, *47* (1), 558-561.

2. Kresse, G.; Hafner, J., Ab initio molecular dynamics for open-shell transition metals. *Physical Review B* **1993**, *48* (17), 13115-13118.

3. Kresse, G.; Hafner, J., Ab-initio molecular-dynamics simulation of the liquid-metal amorphoussemiconductor transition in germanium *Phys. Rev. B* **1994**, *49* (20), 14251-14269.

4. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. *Physical Review B* **1999**, *59* (3), 1758-1775.

5. Wen, Y.; Zhang, J. J. S. S. C., Surface energy calculation of the fcc metals by using the MAEAM. **2007**, *144*, 163-167.

6. Zhang, J.-M.; Wang, D.-D.; Xu, K.-W., Calculation of the surface energy of hcp metals by using the modified embedded atom method. *Applied Surface Science* **2006**, *253* (4), 2018-2024.

7. Hofmann, P., The surfaces of bismuth: Structural and electronic properties. *Progress in Surface Science* **2006**, *81* (5), 191-245.

8. Che, J. G.; Chan, C. T.; Jian, W. E.; Leung, T. C., Surface atomic structures, surface energies, and equilibrium crystal shape of molybdenum. *Physical Review B* **1998**, *57* (3), 1875-1880.

9. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U., Trends in the Exchange Current for Hydrogen Evolution. *Journal of The Electrochemical Society* **2005**, *152* (3).

10. Marković, N. M.; Grgur, B. N.; Ross, P. N., Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions. *The Journal of Physical Chemistry B* **1997**, *101* (27), 5405-5413.

11. Zheng, J.; Sheng, W.; Zhuang, Z.; Xu, B.; Yan, Y., Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. *Science Advances* **2016**, *2* (3), e1501602.

12. Durst, J.; Simon, C.; Hasché, F.; Gasteiger, H. A., Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media. *Journal of The Electrochemical Society* **2014**, *162* (1), F190-F203.

13. Xu, W.; Zhu, S.; Liang, Y.; Cui, Z.; Yang, X.; Inoue, A.; Wang, H., A highly efficient electrocatalyst based on amorphous Pd–Cu–S material for hydrogen evolution reaction. *Journal of Materials Chemistry* A **2017**, *5* (35), 18793-18800.

14. Safavi, A.; Kazemi, S. H.; Kazemi, H., Electrocatalytic behaviors of silver–palladium nanoalloys modified carbon ionic liquid electrode towards hydrogen evolution reaction. *Fuel* **2014**, *118*, 156-162.

15. Kuhn, A. T.; Wright, P. M., The cathodic evolution of hydrogen on ruthenium and osmium electrodes. *Journal of Electroanalytical Chemistry and Interfacial Electrochemistry* **1970**, *27* (2), 319-323.

16. Pentland, N.; Bockris, J. O. M.; Sheldon, E., Hydrogen Evolution Reaction on Copper, Gold, Molybdenum, Palladium, Rhodium, and Iron. *Journal of The Electrochemical Society* **1957**, *104* (3), 182.

17. Kawashima, K.; Shin, K.; Wygant, B. R.; Kim, J.-H.; Cao, C. L.; Lin, J.; Son, Y. J.; Liu, Y.; Henkelman, G.; Mullins, C. B., Cobalt Metal–Cobalt Carbide Composite Microspheres for Water Reduction Electrocatalysis. *ACS Applied Energy Materials* **2020**, *3* (4), 3909-3918.

18. Navarro-Flores, E.; Chong, Z.; Omanovic, S., Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium. *Journal of Molecular Catalysis A: Chemical* **2005**, *226* (2), 179-197.

19. Perez, J.; Gonzalez, E. R.; Villullas, H. M., Hydrogen Evolution Reaction on Gold Single-Crystal Electrodes in Acid Solutions. *The Journal of Physical Chemistry B* **1998**, *102* (52), 10931-10935.

20. Štrbac, S.; Srejić, I.; Rakočević, Z., Electrocatalysis of Hydrogen Evolution Reaction on Au(111) by Spontaneously Deposited Iridium in Acid Solution. *Journal of The Electrochemical Society* **2018**, *165* (15), J3335-J3341.

21. Rivera, J. G.; Garcia-Garcia, R.; Coutino-Gonzalez, E.; Orozco, G., Hydrogen evolution reaction on metallic rhenium in acid media with or without methanol. *International Journal of Hydrogen Energy* **2019**, *44* (50), 27472-27482.

22. Garcia-Garcia, R.; Ortega-Zarzosa, G.; Rincón, M. E.; Orozco, G., The Hydrogen Evolution Reaction on Rhenium Metallic Electrodes: A Selected Review and New Experimental Evidence. *Electrocatalysis* **2015**, *6* (3), 263-273.

23. Wu, Y. M.; Li, W. S.; Long, X. M.; Wu, F. H.; Chen, H. Y.; Yan, J. H.; Zhang, C. R., Effect of bismuth on hydrogen evolution reaction on lead in sulfuric acid solution. *Journal of Power Sources* **2005**, *144* (2), 338-345.

24. Bockris, J. O. M.; Srinivasan, S., Elucidation of the mechanism of electrolytic hydrogen evolution by the use of H-T separation factors. *Electrochimica Acta* **1964**, *9* (1), 31-44.

25. Butler, J. N.; Dienst, M., Hydrogen Evolution at a Solid Indium Electrode. *Journal of The Electrochemical Society* **1965**, *112* (2), 226.

26. Kuhn, A. T.; Mortimer, C. J.; Bond, G. C.; Lindley, J., A critical analysis of correlations between the rate of the electrochemical hydrogen evolution reaction and physical properties of the elements. *Journal of Electroanalytical Chemistry and Interfacial Electrochemistry* **1972**, *34* (1), 1-14.