Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information (ESI) for

Iron Phosphate Nanoparticle Catalyst for Direct Oxidation of Methane into Formaldehyde: Effect of Surface Redox and Acid-Base Properties

Aoi Matsuda,^a Haruka Tateno,^a Keigo Kamata,^{*abc} and Michikazu Hara^{*a}

^a Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan

^b Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

^c JST, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

E-mail: kamata.k.ac@m.titech.ac.jp, hara.m.ae@m.titech.ac.jp

Experimental

Materials. Reagents such as $Fe(NO_3)_3 \cdot 9H_2O$, $Fe(OAc)_2$, $NH_4H_2PO_4$, DLmalic acid, and L-aspartic acid were purchased from Kanto Chemical and used asreceived. Distilled water was produced in-house using a water purifier (Yamato Auto Still WG202). Helium (\geq 99.99995%), methane (\geq 99.999%), oxygen (\geq 99.99995%), and nitrogen (\geq 99.99995%) were used as-received for the catalytic oxidation of methane.

Instruments. Bulk properties of solid materials were investigated by the following procedures.^{S1–S5} Samples were identified by X-ray diffraction (XRD) using a diffractometer (MiniFlex, Rigaku) with Cu K α radiation ($\lambda = 1.5405$ Å, 40 kV–15 mA)

and equipped with a high-speed 1-dimensional detector (D/teX Ultra). Data were collected in the 2θ range of $10-80^{\circ}$ in 0.02° steps with a continuous scanning rate of 20° min⁻¹. The chemical composition was analyzed using inductively coupled plasma-atomic emission spectroscopy (ICP–AES; ICPS-8100, Shimadzu). Diffuse reflectance infrared Fourier transform spectra were obtained using a spectrometer (FT/IR-6100, JASCO) equipped with a diffuse reflectance attachment.

Thermogravimetry-differential thermal analysis (TG-DTA) was performed using a differential thermal analyzer (DTG-60, Shimadzu), and the measurements were conducted under both reductive and oxidative conditions. First, the atmosphere of the furnace was replaced with H₂/N₂ by pretreating the sample in a H₂/N₂ (20/180 mL min⁻¹) flow at room temperature for 30 min prior to the measurement, and the temperature was increased from room temperature to 650 °C at a heating rate of 5 °C min⁻¹ and held for 30 min in a H₂/N₂ (20/180 mL min⁻¹) flow. After cooling to room temperature, the gas flow was changed to O₂ (200 mL min⁻¹) and held for 30 min. The atmosphere of the furnace was then replaced with O₂ by pretreating the sample in a O₂ (200 mL min⁻¹) flow at room temperature for 30 min prior to the measurement, after which the temperature was increased from room temperature to 650 °C at a heating rate of 5 °C min⁻¹

H₂ temperature-programmed reduction (H₂-TPR) profiles were measured on a chemisorption analyzer (BELCAT-A, BEL Japan) equipped with a thermal conductivity detector (TCD) to measure changes in the decrease of H₂ in the gas stream. 50 mg of sample was placed in a quartz cell and then heated from 50 to 700 °C at a rate of 5 °C min⁻¹ under 5% H₂/Ar flow (50 mL min⁻¹).

The surface properties of the solid materials were investigated by the following procedures.^{S1–S5} The specific surface area was determined by nitrogen adsorptiondesorption isotherms measured at -196 °C with an automatic surface area and porosimetry analyzer (Tristar II, Micromeritics), and the Brunauer-Emmett-Teller (BET) surface area was estimated over the relative pressure (*P*/*P*₀) range of 0.05–0.30. The sample was heated at 150 °C for 2 h under vacuum prior to the measurements, and the BET method was utilized to calculate the specific surface area. The morphology was characterized using scanning electron microscopy (SEM; S-4800, Hitachi). After directly mixing Cu grids with samples, the Cu grids were collected and mounted on a stage. X-ray photoelectron spectroscopy (XPS) data were collected on a spectrometer (ESCA-3400HSE, Shimadzu) with a standard Mg K α source (1253.6 eV) operated at 10 kV and 25 mA. Samples were pressed into pellets and fixed on a piece of double-sided carbon tape. The binding energy was calibrated assuming the binding energy of the C 1s line to be 284.6 eV.

Procedure for IR measurements. The amounts of Lewis and Bronsted acid sites on FePO₄-MA and Fe₂O₃ catalysts were estimated from FT-IR measurements for pyridineadsorbed samples at 25 °C.^{S5-S7} Samples were pressed into self-supporting disks (20 mm diameter, 17.8 mg and 78.6 mg for FePO4-MA and Fe₂O₃, respectively) and placed in an IR cell attached to a closed glass-circulation system. Prior to pyridine adsorption, the sample was dehydrated by heating at 300 °C for 1 h under vacuum. The intensity of the band at 1450 cm⁻¹ (pyridine coordinatively bonded to Lewis acid sites, molecular absorption coefficient: 4.5 and 1.8 cm²·µmol⁻¹ for FePO₄-MA and Fe₂O₃, respectively) was plotted against the amount of pyridine adsorbed on the Lewis acid sites of the samples. The band intensity increased with the amount of chemisorbed pyridine and reached a plateau with the appearance of the band due to physisorbed pyridine (ca. 1440 cm⁻¹). While the band around 1440 cm⁻¹ disappeared after evacuation at room temperature for 4 h, there was no significant difference in the intensity of the 1446 cm⁻¹ band before and after evacuation, which indicated that the maximum intensity of the 1446 cm⁻¹ band corresponded to the amount of Lewis acid sites available to chemisorb pyridine until saturation. The amounts of Lewis acid sites on FePO₄-MA and Fe₂O₃ were estimated to be 13 and 50 μ mol g⁻¹, respectively, from the maximum band intensities and molecular absorption coefficient at 1446 cm⁻¹. The relationship among the surface Lewis acid sites, surface active sites, and CH₄ oxidation performance is discussed in "3.1 Synthesis and characterization of iron-based catalysts" and "3.4 Acid-base properties of iron-based For IR measurements with chloroform-adsorbed samples at 25 °C, a catalysts". dehydrated sample (by heating at 300 °C for 1 h under vacuum) was exposed to chloroform vapor, and Fig. 10(a) shows IR spectra for FePO₄-MA and Fe₂O₃ at gas-phase chloroform pressures of 2.7×10^{-2} and 1.4×10^{-2} kPa, respectively. IR measurements with acetone and methanol-adsorbed samples at 25 °C were prepared by exposure of the dehydrated sample (by heating at 300 °C for 1 h under vacuum) to saturated acetone and methanol vapor followed by evacuation at 25 °C for 30 min to remove weakly physisorbed acetone and methanol.

Fig. S1 TG-DTA profiles for (a) fresh FePO₄-MA in H_2/N_2 (10/90, v/v) and (b) reduced FePO₄-MA in O₂. (c) XRD patterns for fresh FePO₄-MA, reduced FePO₄-MA, reoxidized FePO₄-MA, FePO₄ (ICSD 201795), and Fe₂P₂O₇ (ICSD 36208).

Fig. S2 TG-DTA profiles for (a) fresh $Fe_3O_3(PO_4)$ in H_2/N_2 (10/90, v/v) and (b) reduced $Fe_3O_3(PO_4)$ in O_2 . (c) XRD patterns for fresh $Fe_3O_3(PO_4)$, reduced $Fe_3O_3(PO_4)$, reoxidized $Fe_3O_3(PO_4)$, $Fe_3O_3(PO_4)$ (ICSD 36207), Fe (ICSD 191830), and Fe_2O_3 (ICSD 82137).

Fig. S3 TG-DTA profiles for (a) fresh $Fe_4(P_2O_7)_3$ in H_2/N_2 (10/90, v/v) and (b) reduced $Fe_4(P_2O_7)_3$ in O₂. (c) XRD patterns for fresh $Fe_4(P_2O_7)_3$, reduced $Fe_4(P_2O_7)_3$, reoxidized $Fe_4(P_2O_7)_3$, and $Fe_4(P_2O_7)_3$ (ICSD 51768).

Fig. **S4** TG-DTA profiles for (a) fresh FePO₄-CM-600 in H_2/N_2 (10/90, v/v) and (b) reduced FePO₄-CM-600 in O₂. (c) XRD patterns for fresh FePO₄-CM-600, reduced FePO₄-CM-600, reoxidized FePO₄-CM-600, FePO₄ (ICSD 201795), and Fe₂P₂O₇ (ICSD 36208).

Fig. S5 TG-DTA profiles for (a) fresh Fe_2O_3 in H_2/N_2 (10/90, v/v) and (b) reduced Fe_2O_3 in O_2 . (c) XRD patterns for fresh Fe_2O_3 , reduced Fe_2O_3 , reoxidized Fe_2O_3 , Fe_2O_3 (ICSD 82137), and Fe (ICSD 191830).

Fig. **S6** XRD patterns for the precursors of FePO₄-MA and FePO₄-CM-600, NH₄NO₃ (ICSD 2772), and FePO₄·2H₂O (ICSD 281077).

Fig. S7 CH₄ conversion and product selectivity as function of reaction temperature for oxidation of CH₄ with O₂ over (a) FePO₄-MA, (b) FePO₄-CM-550, (c) FePO₄-CM-600, (d) Fe₃O₃(PO₄), (e) Fe₄(P₂O₇)₃, and (f) Fe₂O₃ catalysts. Reaction conditions: catalyst (50 mg), CH₄/O₂/N₂ (7/1/8 sccm), 440–550 °C.

Fig. S8 XRD patterns for fresh and recovered catalysts after oxidation of CH₄ under same conditions as those in Fig. S6; (a) FePO₄-MA, (b) FePO₄-CM-550, (c) FePO₄-CM-600, (d) Fe₃O₃(PO₄), (e) Fe₄(P₂O₇)₃, and (f) Fe₂O₃.

Fig. **S9** (a) CH₄ conversion as function of reaction temperature and (b) Arrhenius plots for oxidation of methane over FePO₄-MA, FePO₄-CM-550, FePO₄-CM-600, Fe₃O₃(PO₄), Fe₄(P₂O₇)₃, Fe₂O₃ catalysts. Inset for (a): data for iron phosphate catalysts in CH₄ conversion region of 0–1.6%. Reaction conditions: catalyst (50 mg), CH₄/O₂/N₂ (7/1/8 sccm), 440–550 °C. R_0 values were determined by CH₄ conversion.

Fig. S10 XRD patterns for (a) fresh FePO₄-MA, and FePO₄-MA reduced with H₂ at (b) 500, (c) 550, (d) 600, and (e) 650 °C, (f) Fe₂P₂O₇ (ICSD 36208), and (g) FePO₄ (ICSD 201795). Reduction of the samples was performed in a TG-DTA furnace under the conditions given in Fig. S1(a).

Fig. S11 XRD patterns for (a) fresh Fe₂P₂O₇ (prepared by reduction of FePO₄-MA), and Fe₂P₂O₇ reoxidized with O₂ at (b) 300, (c) 400, (d) 500, and (e) 650 °C, (f) α -Fe₃(P₂O₇)₂ (detailed data are shown in Refs. S8 and S9), (g) Fe₂P₂O₇ (ICSD 36208), and (h) FePO₄ (ICSD 201795). Reoxidation of the samples was performed in a TG-DTA furnace under the conditions given in Fig. S1(b).

Fig. **S12** Possible reaction pathways for redox cycle between $FePO_4$ and $Fe_2P_2O_7$.

Fig. S13 XRD patterns for recovered FePO₄-MA after temperature-programmed reaction measurement as shown in Fig. 6, Fe₂P₂O₇ (ICSD 36208), and FePO₄ (ICSD 201795).

Fig. S14 (a) CH₄ conversion, product selectivity, and (b) HCHO yield as function of reaction temperature, and (c) selectivity to HCHO as function of CH₄ conversion for oxidation of methane with O₂ over Fe₂P₂O₇. Reaction conditions: catalyst (50 mg), CH₄/O₂/N₂ (7/1/8 sccm), 440–550 °C. (d) XRD patterns for fresh Fe₂P₂O₇, recovered Fe₂P₂O₇ after oxidation, α -Fe₃(P₂O₇)₂ (detailed data are shown in Refs. S8 and S9), Fe₂P₂O₇ (ICSD 36208), and FePO₄ (ICSD 201795).

Fig. S15 XPS Fe 2p spectra for (a) fresh FePO₄-MA, (b) recovered FePO₄-MA after oxidation of CH₄ under conditions given in Fig. S7, and (c) recovered FePO₄-MA after pulse reaction experiments under conditions given in Fig. 8(a).

Fig. **S16** Proposed reaction mechanism for oxidation of CH₄ with O₂ over FePO₄ catalyst reported in Refs. S10 and S11. O*: lattice oxygen atoms in surface region.

Fig. **S17** (a) XRD patterns and (b) IR spectra for fresh and recovered FePO₄-MA after pulse-experiments as shown in Fig. 8.

Fig. **S18** Difference IR spectra for pyridine-adsorbed Fe₂O₃ at 25 °C.

References

- (S1) Y. Yamaguchi, R. Aono, E. Hayashi, K. Kamata and M. Hara, ACS Appl. Mater. Interfaces, 2020, 12, 36004–36013.
- (S2) E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba and M. Hara, *J. Am. Chem. Soc.*, 2019, **141**, 890–900.
- (S3) K. Kamata, K. Sugahara, Y. Kato, S. Muratsugu, Y. Kumagai, F. Oba, M. Hara, ACS Appl. Mater. Interfaces, 2018, 10, 23792–23801.
- (S4) K. Sugahara, K. Kamata, S. Muratsugu and M. Hara, ACS Omega, 2017, 2, 1608– 1616.
- (S5) S. Kanai, I. Nagahara, Y. Kita, K. Kamata and M. Hara, *Chem. Sci.*, 2017, 8, 3146– 3153.
- (S6) T. Komanoya, K. Nakajima, M. Kitano and M. Hara, J. Phys. Chem. C, 2015, 119, 26540–26546.
- (S7) K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo, S. Hayashi and M. Hara, J. Am. Chem. Soc., 2011, 133, 4224–4227.
- (S8) J.-M. M. Millet, Catal. Rev. Sci. Eng., 1998, 40, 1–38.
- (S9) J.-M. M. Millet, J. C. Vedrine, G. Hecquet, Stud. Surf. Sci. Catal., 1990, 55, 833– 841.
- (S10) Y. Wang and K. Otsuka, J. Catal., 1995, 155, 256–267.
- (S11) Y. Wang, X. Wang, Z. Su, Q. Guo, Q. Tang, Q. Zhang and H. Wan, *Catal. Today*, 2004, **93-95**, 155–161.