Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting information In situ α-Fe₂O₃ modified La₂Ti₂O₇ for enhanced photocatalytic CO₂ reduction activity

Zifan Zhang, Yuan Lin, Qianwen Liu, Xuxu Wang, Xianzhi Fu, Wenyue Su*

State Key Laboratory of Photocatalysis on Energy and Environment, College of

Chemistry, Fuzhou University, Fuzhou Fujian 350116 P. R. China

* Corresponding author. E-mail: suweny@fzu.edu.cn; Tel: +86 0591 22865820

Figure captions

- Table S1 The Fe content in the as-prepared α -Fe₂O₃/LTO composites
- Table S2 The physical adsorption capacity of LTO and α -Fe₂O₃/LTO

Figure S1 The SEM images of LTO and α-Fe₂O₃/LTO samples

Figure S2 AFM images of the LTO sample

Figure S3 Raman spectra of different samples

- Figure S4 N_2 adsorption-desorption isotherms of LTO and $\alpha\text{-}Fe_2O_3/\text{LTO}$ samples
- Figure S5 CO₂ adsorption isotherm of LTO and α -Fe₂O₃/LTO samples
- Figure S6 Control experiments for photocatalytic CO₂ reduction over α -Fe₂O₃/LTO sample
- Figure S7 Mass spectra from photocatalytic reduction of CO₂ over α -Fe₂O₃/LTO sample
- Figure S8 Recycling stability tests over α -Fe₂O₃/LTO sample
- Figure S9 XRD pattern of α -Fe₂O₃/LTO sample before and after cycling test
- Figure S10 Mott-Schottky plots of LTO and α -Fe₂O₃ samples
- Figure S11 EPR spectra of the α -Fe₂O₃/LTO samples in dark and light conditions

Samples	Fe content (wt.%)	Calculated α -Fe ₂ O ₃ content (wt.%)
1 wt.% α-Fe ₂ O ₃ /LTO	0.59	0.84
3 wt.% α -Fe ₂ O ₃ /LTO	1.83	2.61
6 wt.% α-Fe ₂ O ₃ /LTO	3.97	5.67

Table S1 The Fe content in the as-prepared α -Fe₂O₃/LTO composites

Table S2 The physical adsorption capacity of LTO and $\alpha\text{-}Fe_2O_3/LTO$

Sample	S _{BET} (m ² /g)	Q <i>co2</i> (cm ³ /g)	Q_{CO2}/S_{BET} (cm ³ /m ²)
LTO	52.9	10.7	0.202
α-Fe ₂ O ₃ /LTO	40.4	8.1	0.201

Figure S1 The SEM images of LTO and $\alpha\mbox{-}Fe_2O_3\mbox{-}LTO$ samples

Figure S2 AFM images of the LTO sample

Figure S3 (a) Raman spectra and (b) Fine Raman spectra of different samples.

Figure S4 N₂ adsorption-desorption isotherms of LTO and α -Fe₂O₃/LTO samples.

Figure S5 CO₂ adsorption isotherm of LTO and α -Fe₂O₃/LTO samples

Figure S6 Control experiments for photocatalytic CO₂ reduction over α-Fe₂O₃/LTO sample.
Reaction conditions: 1. 20 mg of α-Fe₂O₃/LTO catalyst, 140 mL saturated CO₂ solution, irradiate for 5h with 125W mercury lamp; 2. without CO₂ (Ar atmosphere); 3. without catalyst;
4. without lamp irradiation.

Figure S7 Mass spectra of CH₄ and CO from photocatalytic reduction of CO₂ over α -Fe₂O₃/LTO sample.

Figure S8 Recycling stability tests over α -Fe₂O₃/LTO sample (3h per cycle).

Figure S9 XRD pattern of α -Fe₂O₃/LTO before and after cycling test.

Figure S10 Mott-Schottky plots of (a) LTO and (b) α -Fe₂O₃ samples.

Fig. S11 EPR spectra of the α -Fe₂O₃/LTO samples in dark and light conditions.