Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Au/TiO2 nanobelts: Thermal enhancement vs plasmon enhancement for visible-

light-driven photocatalytic selective oxidation of amines into imines

Kaiyue Zhang‡, Guilong Lu‡, Feng Chu, Xiubing Huang*

Beijing Key Laboratory of Function Materials for Molecule & Structure Construction,

School of Materials Science and Engineering, University of Science and Technology

Beijing, Beijing, 100083, China.

*Corresponding authors: E-mail: xiubinghuang@ustb.edu.cn (X. Huang)

‡ These authors contributed equally to this work.

Figure S1. The GC-MS analysis of supernatant using 0.5 mol% Au/TiO₂ as photocatalyst for photocatalytic oxidation of benzylamine.

Figure S2. ESR spectrum of TiO_2 and 0.5 mol% Au/TiO₂ at room temperature.

Figure S3. XRD patterns of as-prepared samples after the recycling experiment .

Figure S4. SEM images of (a) TiO₂ nanobelts; (b) 0.5 mol% Au-TiO₂ ;(c) 1.5 mol% Au-TiO₂ samples; (d) 2.5 mol% Au-TiO₂ samples after cycle experiments.

Figure S5. The recyclability of TiO_2 and 0.5 mol% Au/TiO₂ catalyst in the photocatalytic oxidation of benzylamine at 60 °C, 12 h.

Figure S6. UV-vis adsorption spectra of the corresponding benzylamine-adsorbed catalyst.

Figure S7. FT-IR image of TiO_2 and 0.5, 1.5, 2.5 mol% Au-TiO₂ nanobelts.

Figure S8. The corresponding UV-vis absorption spectra for detecting H_2O_2 produced in the reaction suspensions for as-prepared samples.

Table S1.	ICP	tests	of	Au/	TiO ₂	cataly	yst
-----------	-----	-------	----	-----	------------------	--------	-----

Sample name	Weight percent of Au	Actual test value	Theoretical value
$0.5 \text{ mol}\% \text{ Au/TiO}_2$	1.50wt%	0.6 mol%	0.5 mol%
1.5 mol% Au/TiO ₂	4.36wt%	1.7 mol%	1.5 mol%
2.5 mol% Au/TiO ₂	7.39wt%	3.0 mol%	2.5 mol%

Table S2. XPS peak details for different catalysts

Catalyst	Ti 2p	Assignments	O 1s	A	Peak area	Au 4f	Assignments	
	(eV)		(eV)	Assignments		(eV)		
	459.0	T:4+ 2	530.2	Lattice oxygen	54.6%			
TiO ₂	438.9	$Ti^{4+} 2p_{3/2}$	530.5	Oxygen vacancy	24.1%	١	\	
	404.0		532.1	Surface absorbed oxygen	21.3%			
	450.0	т:4+ Эл	530.2	Lattice oxygen	60.0%	02 5	A., 4£	
0.5 Au/TiO ₂	439.0	T:4+ 2p	530.5	Oxygen vacancy	21.0%	83.5	Au $41_{7/2}$	
	404.7	11 ¹¹ 2p _{1/2}	532.3	Surface absorbed oxygen	19.0%	07.1	Au 41 _{5/2}	
1.5 Au/TiO ₂	450.0	T:4+ 2 ~	530.2	Lattice oxygen	67.4%	82.5	An Af	
	439.0	$11^{4+}2p_{3/2}$	530.5	Oxygen vacancy	17.1%	03.J	Au $41_{7/2}$	
	404./	$11^{-1} 2p_{1/2}$	532.2	Surface absorbed oxygen	15.5%	87.1	Au 41 _{5/2}	
2.5 Au/TiO ₂	450.0	T;4+ 2 n	530.2	Lattice oxygen	70.3%	07 5	A., 4£	
	439.0	T:4+ 2m	530.5	Oxygen vacancy	14.5%	83.3 97.1	Au $41_{7/2}$	
	404./	$11^{+}2p_{1/2}$	532.2	Surface absorbed oxygen	15.2%	87.1	Au 41 _{5/2}	
TiO ₂ -absorbed	458.7	$Ti^{4+}2p_{3/2}$	529.9	Lattice oxygen	30.5%	N		
	464.4	$Ti^{4+}2p_{1/2}$	532.0	Surface absorbed oxygen	69.5%	١	\ \	
0.5 Au/TiO ₂ -absorbed	450 7	T:4+ 2	529.8	Lattice oxygen	53.6%	02.0	A 46	
	458.7	$Ti^{4+} 2p_{3/2}$ $Ti^{4+} 2p_{1/2}$	530.3	Oxygen vacancy	22.2%	83.8 22.2%	Au 4t _{7/2}	
	464.3		532.1	Surface absorbed oxygen	24.2%	87.4	Au 41 _{5/2}	

	∕он	Visible light (>420 n 10 mg catalyst, 0.2 5 m		
Temperatur e	TiO ₂	0.5 mol% Au- TiO ₂	1.5 mol% Au-TiO ₂	2.5 mol% Au-TiO ₂
20 °C	9.2	16.4	19.2	22.6
60 °C	20.1	25.2	29.3	32.8

Table S3. Activity of TiO_2 and M-Au/TiO₂ Catalysts in oxidation of Benzyl Alcohol into Benzaldehyde

Table S4. Aerobic oxidation of secondary benzylic amines by TiO_2 and 0.5 mol% Au/TiO₂ at 25 °C,12h visible-light irradiation.

Catalyst	Substrata	Conversion	Product selectivity
	Substrate	(%)	(%)
TiO ₂		42.4	3 97
0.5 mol% Au/TiO ₂		23.6	100