Supplementary Information

Promotional effect of indium on Cu/SiO₂ catalysts for the hydrogenation

of dimethyl oxalate to ethylene glycol

Yuxi Xu, Lingxin Kong, Huijiang Huang, Hui Wang, Xiaofei Wang, Shengping Wang, Yujun Zhao*, Xinbin Ma*

Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

*Corresponding author.

E-mail address: yujunzhao@tju.edu.cn (Y. Zhao).

xbma@tju.edu.cn (X. Ma)

Table of Contents

Supporting Figures S1-S12

Supporting Tables S1-S8

References

In (wt%)	Cu (wt%) ª	In (wt%) ª	S _{BET} (m²/g) ^b	Vp (cm³/g) ^b	Dp(nm) ^b
0	28.45	0	473	0.83	5.8
0.5	30.30	0.53	510	0.98	6.3
1	29.06	1.02	482	0.86	5.8
1.5	29.64	1.49	497	0.95	6.4

Table S1. Textural Properties of CuxIn/SiO₂ Catalysts.

^aDetermined by ICP-OES analysis. ^bDetermined by N_2 isotherm adsorption.

Figure S1. XRD for calcined catalysts and the fine scanning XRD at 62-65 degree for $CuxIn/SiO_2$ catalysts (a-g: x=0, 0.5, 1, 1.5, 2, 5, 10) and $6.7In/SiO_2$ (h).

Figure S2. XRD for calcined $6.7 In/SiO_2$ catalyst

Figure S3. XRD patterns for reduced (a) and fine scanning XRD for reduced catalysts at 33-45 degree (b), Cu_2O (JCPDS: 05-0667)¹.

Catalysta	Reduced(nm)				
Catalysts	Cu+	Cu ⁰			
Cu/SiO ₂	2.3	2.6			
Cu0.5In/SiO ₂	2.1	-			
Cu1In/SiO ₂	2.2	-			
Cu1.5In/SiO ₂	2.2	-			
Cu2In/SiO ₂	1.9	2.2			
Cu10In/SiO ₂	-	3.3			

Table S2. Particle sizes calculated from XRD with reduced catalysts.

Figure S4. Deconvolution of the enlarged H_2 -TPR curve of 6.7In/SiO₂.

Figure S5. H_2 -TPD curves of CuxIn/SiO₂ catalysts.

Figure S6. XPS for Cu 2p(a), Cu 2p_{3/2}(b), Si 2p(c), O 1s(d).

Figure S7. Activity evaluation of CuxIn/SiO₂ catalysts (x=0, 0.5, 1, 1.5), conversion of DMO (a), selectivity of EG (b), selectivity of MG (c) at reaction conditions of 2.5 MPa, 180 °C, H₂/DMO = 80 (mole) and stability evaluation of Cu1In/SiO₂ catalyst (d) at reaction conditions of 2.5 MPa, 180 °C, H₂/DMO = 80 (mole) and WHSV=0.8 h⁻¹.

Figure S8. STY of EG at different WHSV, reaction conditions: 2.5 MPa, 180 °C, H₂/DMO = 80 (mole).

Figure S9. Catalytic performance of Cu1In/SiO₂ with different H₂/DMO (a) at 180 $^{\circ}$ C, 2 h⁻¹, 2.5 MPa, and reaction temperature (b) at 10 h⁻¹, 2.5 MPa, H₂/DMO = 80 (mole).

Figure S10. Relationship between STY_{EG} and H_2 adsorption amount (a) and ratio of $Cu^0/Cu^+(b)$.

Figure S11. Madon-Boudart test² with Cu1In/SiO₂. Reaction conditions: 180 $^{\circ}$ C, 2.5 MPa, WHSV = 3 h⁻¹ and H₂/DMO = 80 (mole).

Figure S12. Elemental mapping of Si, O, Cu and In for Cu1In/SiO $_2$

T/ºC	WHSV/h ⁻¹	C(DMO)/%	S(EG)/%
184.8	6	35.3	19.0
180.0	6	23.9	12.7
175.1	6	16.3	10.2
170.4	6	11.4	9.6
165.4	6	7.5	6.6

Table S3. The evaluation results for Cu/SiO_2 when calculating the Ea.

Table S4. The evaluation results for Cu0.5In/SiO₂ when calculating the Ea.

T/ºC	WHSV/h ⁻¹	C(DMO)/%	S(EG)/%
184.3	10	27.7	14.9
180.9	10	20.8	13.6
175.2	10	13.4	10.1
170.1	10	9.3	7.9
164.8	10	6.2	5.2

Table S5. The evaluation results for Cu1In/SiO $_{\rm 2}$ when calculating the Ea.

T/ºC	WHSV/h ⁻¹	C(DMO)/%	S(EG)/%
185.4	14	20.4	12.1
180.0	14	13.9	8.7
175.2	14	9.8	5.8
170.3	14	7.1	7.2
165.4	14	5.0	6.4

Table S6. The evaluation results for Cu1.5In/SiO $_{\rm 2}$ when calculating the Ea.

T/ºC	WHSV/h ⁻¹	C(DMO)/%	S(EG)/%
185.3	10	24.2	15.9
180.6	10	16.4	11.2
175.8	10	11.4	8.8
169.9	10	7.7	8.3
165.0	10	5.1	6.5

Table S7 Catalytic performance of DMO hydrogenation for Cu5In/SiO $_2$ and Cu10In/SiO $_2$.

Catalysts	C(DMO)/%	S(EG)/%	S(MG)/%
Cu5In/SiO ₂	41.5	16.9	83.1
Cu10In/SiO ₂	24.4	5.7	94.3

Reaction conditions: 2.5 MPa, 180 °C, WHSV=0.4 h^{-1} , $H_2/DMO = 80$ (mole)

catalyst	C _{DMO} /%	S _{EG} /%	P/	T/ ⁰C	H ₂ /DMO	LHSV	Yield/%	STY/	TOF/h ⁻¹
o /h /h /h o co2		0.6.4	IVIPa	<u>-</u> C		/11-		0.000	
	98.2	96.1	2	165	50	1	94.4	0.602	23.6(165
20Cu-OMS*	100	98.2	2.5	180	80	1	98.2	0.477	-
Lu1in/SiO2(this work)	100	96	2.5	180	80	0.6	96	0.52	27.6(180
6Cu1.9Au/SBA-15°	100	99.1	3	180	80	0.6	99	1.5	121(180
Cu/ZrO2-x-S3 ⁶	100	99.5	2	180	50	2	99.5	1.05	42.4(180
CuZr1/SiO2 ⁷	100	95	2.5	180	80	0.6	-	-	35.6(180
1B-Cu-SiO2 ⁸	99.7	93	3	190	80	0.75	92.7	1.6	-
Cu@SiO2@CNT ⁹	100	~99	3	190	100	0.6	99	-	22(190)
0.05D-Cu-SiO2 ¹⁰	99.9	96.9	2	190	50	1	96.8	-	11.4(160
Cu-Ag0.05/SiO2 ¹¹	100	97	3	190	80	0.6	97	-	20.6(190
CuSiZr1-850 ¹²	100	99	3	190	150	0.3	99	-	30(190)
Cu/SiO2-3HZ-38	99.8	94.4	3	190	80	2	94.2	1.50	-
6Cu1-Pt0.1/SBA-1513	100	98	3	190	80	0.6	98	0.31	62.1(190
Cu/SiO2 ¹⁴	100	95.0	2.5	200	200	2	95.0	-	-
Cu/SiO2 ¹⁵	95.0	90.0	3	200	80	0.6	85.5	-	-
Cu/10-SiO2 ¹⁶	100	94.7	2.5	200	120	2.5	94.7		30.6(195
Cu-PSNT@m-SiO2 ¹⁷	100	98.0	3	200	80	2	98.0	-	40.6(200
Cu/NAHS	100	95.0	2.5	200	20	2	95.0	-	160(200
Cu-0.5%Pd/SiO2 ¹⁸	100	95.0	2.5	200	100	0.5	95	-	-
Cu-0.6%Sn/SiO2 ¹⁹	100	96.0	2.5	200	90	1	96	-	-
15CNTs-Cu-SiO2 ²⁰	100	95.0	3	200	80	1.2	95.0	2.6	-
Cu/SiO2-TiO2 ²¹	100	97	3	200	100	0.3	97	-	-
Cu/H1S1 ²²	100	98	2.5	200	100	1.5	98	-	1.89(200
20Cu-HMS ²³	100	98	2.5	200	50	0.45	98	-	3.8
20Cu-MCM-41 ²⁴	100	92	2.5	200	80	3	92	-	-
CuB/HMS(2/1) ²⁵	100	98	2.5	200	120	2.5	98	-	-
Cu3Ni/HMS ²⁶	100	98	2.5	200	100	1	98	-	19.7(200
Cu-Ni/ZrO2-DBD ²⁷	100	96	2.5	200	120	0.3	96	-	-
Cu/SiO2-MOF ²⁸	99.9	95.0	2	210	50	0.82	94.9	0.424	19.3(190
0.1CD-Cu-SiO2 ²⁹	~99.9	~95.0	2	210	50	0.72	94.9	~0.36	11.4(170
10%Cu-Co/HMS ³⁰	100	>95.0	3	220	150	1.2	95.0	-	5.5(220)
Cu/Al-ZrO2 ³¹	100	97.1	2.5	220	120	0.8	97.1	-	16.9(220
CuZnAl-773 ³²	100	>95.0	3	220	100	0.3	95.0	-	-
CuZnZr-0.2 ³³	>95.0	>95.0	3	220	150	0.3	90	-	-
CoCu-ZnO-450 ³⁴	100	93	2.5	220	110	2	93	-	-
CuZnAl-LDH ³⁵	100	94.7	2.5	220	160	0.3	94.7	-	-
20Cu/P25-823 ³⁶	100	99	2.5	220	100	0.3	99	-	4.5(220)
Cu@CNTs-350 ³⁷	99.4	87.4	2.5	240	200	0.2	86.9	-	-
20Cu/HΔP ³⁸	100	90.0	25	240	150	0.4	90	0 72	14 6(210

Table S8. Catalytic performance of copper-based catalysts in DMO hydrogenation to EG.

^aRT: reaction temperature when calculating the TOF values.

References

- [1] Xu C., Chen G., Zhao Y., Liu P., Duan X., Gu L., Fu G., Yuan Y., Zheng N., Nat. Commun., 2018, 9, 3367.
- [2] M. Zhang, M. Wang, B. Xu, D. Ma, *Joule*, 2019, **3**, 2876-2883.
- G. Cui, X. Meng, X. Zhang, W. Wang, S. Xu, Y. Ye, K. Tang, W. Wang, J. Zhu, M. Wei,
 D. G. Evans, X. Duan, *Appl. Catal. B- Environ.*, 2019, 248, 394-404.
- [4] Y. Zhao, Y. Zhang, Y. Wang, J. Zhang, Y. Xu, S. Wang, X. Ma, Appl. Catal. A- Gen., 2017, 539, 59-69.
- [5] Y.-n. Wang, X. Duan, J. Zheng, H. Lin, Y. Yuan, H. Ariga, S. Takakusagi, K. Asakura, Catal. Sci. Technol., 2012, 2.
- [6] G. Cui, X. Zhang, H. Wang, Z. Li, W. Wang, Q. Yu, L. Zheng, Y. Wang, J. Zhu, M. Wei, *Appl. Catal. B- Environ.*, 2021, 280.
- [7] Y. Zhao, H. Zhang, Y. Xu, S. Wang, Y. Xu, S. Wang, X. Ma, J. Energy Chem., 2020, 49, 248-256.
- [8] Z. He, H. Lin, P. He, Y. Yuan, J. Catal., 2011, 277, 54-63.
- [9] J. Zheng, H. Fang, X. Duan, H. Lin, Y. Yang, Y. Yuan, ACS Appl. Mater. Inter., 2020, 12, 27268-27276.
- [10] R.-P. Ye, L. Lin, J.-X. Yang, M.-L. Sun, F. Li, B. Li, Y.-G. Yao, J. Catal., 2017, 350, 122-132.
- [11] Y. Huang, H. Ariga, X. Zheng, X. Duan, S. Takakusagi, K. Asakura, Y. Yuan, J. Catal., 2013, 307, 74-83.
- [12] Y. Zhu, X. Kong, D.-B. Cao, J. Cui, Y. Zhu, Y.-W. Li, ACS Catal., 2014, 4, 3675-3681.
- [13] X. Zheng, H. Lin, J. Zheng, H. Ariga, K. Asakura, Y. Yuan, *Top. Catal.*, 2014, 57, 1015-1025.
- [14] J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Lv, S. Wang, X. Ma, J. Am. Chem. Soc., 2012, 134, 13922-13925.
- [15] J. Lin, X. Zhao, Y. Cui, H. Zhang, D. Liao, Chem. Commun. (Camb), 2012, 48, 1177-1179.
- [16] C. Zhang, D. Wang, M. Zhu, F. Yu, B. Dai, *Catalysts*, 2017, **7**,75.
- [17] C. Xu, G. Chen, Y. Zhao, P. Liu, X. Duan, L. Gu, G. Fu, Y. Yuan, N. Zheng, Nat. Commun., 2018, 9, 3367.
- [18] C. Zhang, D. Wang, M. Zhu, F. Yu, B. Dai, *ChemistrySelect*, 2016, **1**, 2857-2863.
- [19] C. Zhang, D. Wang, B. Dai, *Catalysts*, 2017, **7**,122.
- [20] H. Lin, X. Duan, J. Zheng, X. Zheng, P. He, Y. Yuan, Y. Yang, RSC Adv., 2013, 3, 11782-11789.
- [21] C. Wen, A. Yin, Y. Cui, X. Yang, W.-L. Dai, K. Fan, Appl. Catal. A- Gen., 2013, 458, 82-89.
- [22] A. Yin, C. Wen, W.-L. Dai, K. Fan, Appl. Sur. Sci., 2011, 257, 5844-5849.
- [23] An. Yin, X. Guo, W.-L. Dai, K. Fan, J. Phys. Chem. C, 2009, 113, 11003–11013
- [24] X. Ma, H. Chi, H. Yue, Y. Zhao, Y. Xu, J. Lv, S. Wang, J. Gong, AIChE J., 2013, 59, 2530-2539.
- [25] A. Yin, J. Qu, X. Guo, W.-L. Dai, K. Fan, Appl. Catal. A- Gen., 2011, 400, 39-47.
- [26] A. Yin, C. Wen, X. Guo, W.-L. Dai, K. Fan, J. Catal., 2011, 280, 77-88.
- [27] C. Zhang, D. Wang, M. Zhu, F. Yu, B. Dai, Catal. Commun., 2017, 102, 31-34.

- [28] R.-P. Ye, L. Lin, C.-C. Chen, J.-X. Yang, F. Li, X. Zhang, D.-J. Li, Y.-Y. Qin, Z. Zhou, Y.-G. Yao, *ACS Catal.*, 2018, **8**, 3382-3394.
- [29] R.-P. Ye, L. Lin, C.-Q. Liu, C.-C. Chen, Y.-G. Yao, ChemCatChem, 2017, 9, 4587-4597.
- [30] C. Wen, Y. Cui, A. Yin, K. Fan, W.-L. Dai, *ChemCatChem*, 2013, 5, 138-141.
- [31] Q. Hu, G. Fan, L. Yang, F. Li, ChemCatChem, 2014, 6, 3501-3510.
- [32] C. Wen, F. Li, Y. Cui, W.-L. Dai, K. Fan, Catal. Today, 2014, 233, 117-126.
- [33] Y. Zhu, X. Kong, H. Zheng, Y. Zhu, *Mol. Catal.*, 2018, **458**, 73-82.
- [34] X. Kong, X. Zhang, J. Chen, Catal. Commun., 2015, 65, 46-50.
- [35] S. Zhang, Q. Liu, G. Fan, F. Li, *Catal. Lett.*, 2012, **142**, 1121-1127.
- [36] B. Wang, Y. Cui, C. Wen, X. Chen, Y. Dong, W.-L. Dai, Appl. Catal. A- Gen., 2016, 509, 66-74.
- [37] P. Ai, M. Tan, Y. Ishikuro, Y. Hosoi, G. Yang, Y. Yoneyama, N. Tsubaki, *ChemCatChem*, 2017, **9**, 1067-1075.
- [38] C. Wen, Y. Cui, X. Chen, B. Zong, W.-L. Dai, *Appl. Catal. B- Environ.*, 2015, **162**, 483-493.