Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

for

Conversion of methane to acetonitrile over GaN catalysts derived from gallium nitrate hydrate co-pyrolyzing with melamine, melem, or g-C₃N₄: the influence of nitrogen precursors

Korawich Trangwachirachai,^a Chin-Han Chen,^a Ai-Lin Huang,^a Jyh-Fu Lee,^b

Chi-Liang Chen,^b and Yu-Chuan Lin^{a,*}

^aDepartment of Chemical Engineering, National Cheng Kung University

No. 1 University Rd., Tainan 70101, Taiwan

^bNational Synchrotron Radiation Research Center

101 Hsin-Ann Rd., Hsinchu 30076, Taiwan

^{*} Corresponding author's Tel.: (886) 6 275 7575 ext. 62668; Fax: (886) 6 234 4496; E-mail: <u>yclin768@mail.ncku.edu.tw</u>

Catalyst	Ga	Ν	N/Ga molar
	$(wt\%)^a$	$(wt\%)^b$	ratio
c-GaN	80.3	8.6	0.53
GaN-(melamine)-(1)	75.6	15.5	1.02
GaN-(melem)-(1)	72.5	15.4	1.06
GaN-(C ₃ N ₄)-(0.5)	73.9	15.1	1.02
$GaN-(C_3N_4)-(1)$	73.7	15.4	1.04
$GaN-(C_3N_4)-(2)$	75.9	15.2	1.00

Table S1. The concentrations of Ga and N of used samples

^aEstimated by ICP-MS ; ^bEstimated by EA

Figure S1. The TOS profiles of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 675, 700, and 725 °C with GHSV = 3000 $mL_{CH_4}/g/h$ by testing GaN-(melamine)-(1). The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S2. The TOS profiles of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 675, 700, and 725 °C with GHSV = 3000 $mL_{CH_4}/g/h$ by testing GaN-(melem)-(1). The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S3. The TOS profiles of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 675, 700, and 725 °C with GHSV = 3000 $mL_{CH_4}/g/h$ by testing GaN-(C₃N₄)-(1). The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S4. The TOS profiles of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 700 °C with GHSVs = 1500, 3000, and 4500 $mL_{CH_4}/g/h$ by testing GaN-(melamine)-(1). The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S5. The TOS profiles of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 700 °C with GHSVs = 1500, 3000, and 4500 $mL_{CH_4}/g/h$ by testing GaN-(melem)-(1). The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S6. The TOS profiles of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 700 °C with GHSVs = 1500, 3000, and 4500 $mL_{CH_4}/g/h$ by testing GaN-(C₃N₄)-(1). The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S7. The TOS profiles of (a) CH_4 conversion and productivities of (b) AcCN, (c) HCN, (d) C_2 , and (e) aromatics at 700 °C with GHSV = 3000 mL_{CH4}/g/h by testing GaN-(C_3N_4)-(0.5, 1, and 2) catalysts. The open symbol means the initial activity calculated by using the MS signals; the closed symbol, calculated by the GC responses.

Figure S8. (a) The methane conversion and (b) AcCN productivity of c-GaN at 700 $^{\circ}C$ with GHSV = 3000 mL_{CH₄}/g/h.

Figure S9. The TOS profiles of a reproducibility testing of (a) CH₄ conversion and productivities of (b) AcCN, (c) HCN, (d) C₂, and (e) aromatics at 700 °C with GHSV = $3000 \text{ mL}_{CH_4}/\text{g/h}$ by testing GaN-(C₃N₄)-(2).

Figure S10. (a) Methane conversion and (b) productivities of AcCN, C_2 , HCN, and aromatics of the regeneration test of GaN-(C_3N_4)-(2) using the calcination-nitridation method.

Figure S11. The AcCN MS signal (m/z = 41) of the alternating feeding test of CH₄-N₂-CH₄ using GaN-(C₃N₄)-(2) as the catalyst at 700 °C with a GHSV of 3000 mL_{CH₄}/g_{cat}/h. Reaction conditions: g_{cat} = 0.2 g and methane flow rate = 10 mL/min. After collecting the data for 40 min, the flow was switched to a N₂ flow (10 mL/min). The N₂ flow was maintained for 80 min, and was then switched back to methane.

а

b

Figure S12. (a) The adsorption-desorption isotherms and (b) pore size distributions of tested catalysts.

Figure S13. The XRD patterns of the post-reaction GaN catalysts.

Figure S14. (a) Ga *K*-edge XANES and (b) the eight oscillation peaks (marked with asterisks) in the first 300 eV above the edge of spent GaN-(C_3N_4)-(2) and c-GaN. (c) Ga-N phase corrected RDFs of Ga *K*-edge for spent GaN-(C_3N_4)-(2) and c-GaN. The solid line represents the experimental data, and the dashed line represents the computer fit. (d) N *K*-edge XANES of spent GaN-(C_3N_4)-(2) and c-GaN. The fitted peaks of G₁ (red), G₂ (green), G₃ (blue), G₄ (cyan), G₅ (magenta), and G₆ (yellow) were included.

Figure S15. XPS spectra of (a) Ga 3d, (b) N 1s, (c) C 1s, and (d) O 1s photolines of c-GaN.

Figure S16. FTIR spectra of the post-reaction GaN catalysts.

Figure S17. (a) TGA/DTA profiles, (b) the MS fragments (m/e = 30 and 44) of GaN-(C_3N_4)-(2) in an air stream (100 mL/min). (c) The temperature-resolved in-situ IR spectra of GaN-(C_3N_4)-(2) from 30 to 600 °C in a 10% O₂/N₂ stream (20 mL/min). (d) The XRD patterns of GaN-(C_3N_4)-(2) after subjecting to the oxidative abatement and its fresh counterpart. (e) Methane conversion and (f) AcCN productivity of GaN-(C_3N_4)-(2) after subjecting to the oxidative abatement at 700 °C.

Figure S18. Calculated equilibrium compositions of AcCN, HCN, H₂, C₂H₄, C₂H₆, and C₆H₆ using (a) CH₄ and N₂ and (b) CH₄ and CN as the feeds (CH₄/N₂ or CH₄/CN = 9/1) in 500 to 1000 °C under ambient pressure.

Figure S19. XRD patterns of $g-C_3N_4$ and 550 °C pyrolyzed precursor (Ga/C₃N₄).

Figure S20. FTIR spectra of fresh GaN-(C_3N_4)-(2) (black), spent GaN-(C_3N_4)-(2) (red), regenerated GaN-(C_3N_4)-(2) (RN-GaN-(C_3N_4)-(2), before the 2nd on-stream test, green), and spent RN-GaN-(C_3N_4)-(2) (after the 2nd on-stream test, blue).

Figure S21. The XRD patterns of regenerated GaN-(C_3N_4)-(2) (RN-GaN-(C_3N_4)-(2), before the 2nd on-stream test, green) and spent RN-GaN-(C_3N_4)-(2) (after the 2nd on-stream test, blue).