Supporting Information

Bimetallic persulfide nanoflake assembled by dealloying and sulfurization: a versatile electrocatalyst for overall water splitting and Zn-air batteries

Mei Wang,^{af} Zizai Ma,^a Wenjuan Zhang,^b Hefeng Yuan,^a Manab Kundu,^c Zhonghua Zhang,^d Jinping Li,^{*e} and Xiaoguang Wang^{*ae}

^a Laboratory of Advanced Materials and Energy Electrochemistry, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China. E-mail: wangxiaog1982@163.com

^b Department de Química, Universitat Autònoma de Barcelona (UAB) 08193 Bellaterra (Cerdanyola del Vallès), Spain.

^c Electrochemical Energy storage Laboratory, Department of Chemistry, SRM University, Tamil Nadu 603203, India.

^d School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan 250061, China.

^e Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan, Shanxi, 030024, China. E-mail: jpli211@hotmail.com

^f School of Materials Science and Engineering, North University of China, Xueyuan Road 3, Taiyuan 030051, China

Fig. S1 XRD patterns of (a) $Al_{90}Co_{2.5}Fe_{7.5}$, (b) $Al_{90}Co_5Fe_5$ and (c) $Al_{90}Co_{7.5}Fe_{2.5}$ precursors.

Fig. S2 XRD patterns of (a) $O-Co_{2.5}Fe_{7.5}$, (b) $O-Co_5Fe_5$ and (c) $O-Co_{7.5}Fe_{2.5}$.

Fig. S3 SEM images of (a) O-Co $_{2.5}$ Fe $_{7.5}$, (b) O-Co $_{5}$ Fe $_{5}$ and (c) O-Co $_{7.5}$ Fe $_{2.5}$.

Fig. S4 EDX elemental mappings of Co, Fe, Al and S for (a) S-Co_{2.5}Fe_{7.5}, (b) S-Co_{2.5}Fe_{7.5} and (c) S-Co_{7.5}Fe_{2.5}.

Fig. S5 (a) TEM and (b) HRTEM images of S-Co_{2.5}Fe_{7.5}. (c) TEM and (b) HRTEM image of S-Co_{7.5}Fe_{2.5}.

Fig. S6 XPS spectra of S-Co_{2.5}Fe_{7.5} sample. (a) Survey spectrum, (b) Co 2p, (c) Fe 2p, (d) Al 2p, (e) S 2p.

Fig. S7 XPS spectra of S-Co_{7.5}Fe_{2.5} sample. (a) Survey spectrum, (b) Co 2p, (c) Fe 2p, (d) Al 2p, (e) S 2p.

Fig. S8 LSV curves of Pt/C measured before and after 5000 ADT continuous cycles.

Fig. S9 (a) TEM image and (b-f) XPS spectra of S-Co₅Fe₅ electrode after both ADT and subsequent CA test in 0.1 M KOH solution.

Fig. S10 Methanol tolerance comparison of (a) Pt/C and (b) S-Co₅Fe₅.

Fig. S11 (a) OER polarization curves of S-Co_{2.5}Fe_{7.5}, S-Co₅Fe₅, S-Co_{7.5}Fe_{2.5} and RuO₂ in 1.0 M KOH. (b) HER polarization curves of S-Co_{2.5}Fe_{7.5}, S-Co₅Fe₅, S-Co_{7.5}Fe_{2.5} and Pt/C in 1.0 M KOH.

Fig. S12 CV curves of (a) S-Co_{2.5}Fe_{7.5}, (b) S-Co₅Fe₅ and (c) S-Co_{7.5}Fe_{2.5} electrodes in the potential range of $1.0 \sim 1.1$ V vs. RHE under different scan rates. (d) Capacitive currents at the middle of potential window as a function of scan rate.

Fig. S13 (a) HER polarization curves of S-Co_{2.5}Fe_{7.5}, S-Co₅Fe₅, S-Co_{7.5}Fe_{2.5} and Pt/C in 0.1 M KOH. (b) Tafel plots. (c) Nyquist plots for S-Co_{2.5}Fe_{7.5}, S-Co₃Fe₅ and S-Co_{7.5}Fe_{2.5} at -0.1 V vs. RHE (The inset is the equivalent circuit for fitting). (d) LSV curves of S-Co₅Fe₅ measured before and after 5000 ADT continuous cycles (The inset is the *j*-*t* profile recorded at a -0.15 V for 40 h). (e) Polarization curves of S-Co₅Fe₅ " S-Co₅Fe₅ S-Co₅Fe₅ in S-Co₅Fe₅ " S-Co₅Fe₅ water splitting in 0.1 M KOH. (f) Stability curves of S-Co₅Fe₅ " S-Co₅Fe₅ and S-Co₅Fe₅ under constant currents of 10 and 20 mA cm⁻² (The inset is the photograph of overall water splitting).

Fig. S14 (a) Photograph of the Zn-air battery device. (b) Photographs of the anode and cathode materials.

Fig. S15 The discharge specific capacity plots of ZnAB (Zn plate $_{11}^{11}$ S-Co₅Fe₅) and ZnAB (Zn plate $_{11}^{11}$ Pt/C) at a current density of 10 mA cm⁻².

Fig. S16 A schematic of the rechargeable Zn-air battery.

Catalysts		Element pro	portion (at. %)	
	Al	Co	Fe	S
S-Co _{2.5} Fe _{7.5}	3.97	11.81	38.07	46.15
S-Co ₅ Fe ₅	2.74	16.12	15.94	65.2
S-Co _{7.5} Fe _{2.5}	1.93	37.35	12.74	47.98

Table S1 ICP analysis for S-Co_xFe_{10-x} (x=2.5, 5, 7.5).

Table S2 Comparison of ORR performance in 0.1 M KOH for the as-prepared catalystsin this study with the other reported catalysts in literatures.

Catalysta	Eonset	E _{1/2}	Tafel slope	Deference
Catalysis	(V)	(V)	$(mV dec^{-1})$	Kelelence
S-Co _{2.5} Fe _{7.5}	0.84	0.62	169	This work
S-Co ₅ Fe ₅	0.91	0.79	64	This work
S-Co _{7.5} Fe _{2.5}	0.86	0.72	85	This work
Pt/C	0.99	0.87	61	This work
NiCo ₂ O ₄ @NiCoFe-OH	0.89	0.77		1
NiO/NiCo ₂ O ₄	0.89	0.73	85.4	2
Co/PCNF		0.78		3
CoSe ₂	0.82	0.75	107	4

-	-	-		
Cotolysta	η_{onset}	η_{10}	Tafel slope	Deference
Catalysis	(mV)	(mV)	(mV dec ⁻¹)	Kelefelice
S-Co _{2.5} Fe _{7.5}	150	390	114	This work
S-Co ₅ Fe ₅	70	300	79	This work
S-Co _{7.5} Fe _{2.5}	130	330	86	This work
RuO ₂	200	370	96	This work
$W-N/C-4@Co_9S_8@WS_2$		560	36	5
LaMnNiCoO ₃ (1:2:3)		370		6
ZnCoMnO ₄ /N-rGO	340	480	158	7
Fe/Ni-N-C		322	69	8

Table S3 Comparison of OER performance in 0.1 M KOH for the as-prepared catalysts in this study with the other reported catalysts in literatures.

Table S4 EIS parameters obtained by fitting the Nyquist plots to the equivalent circuitmodel in 0.1 M KOH at 1.5 V vs. RHE.

Catalysts	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega\right)$	Q_1 (F cm ⁻²)	n ₁
S-Co _{2.5} Fe _{7.5}	2.662	12.59	0.0101	0.918
S-Co ₅ Fe ₅	1.104	1.290	0.1078	0.785
S-Co _{7.5} Fe _{2.5}	1.820	8.887	0.0229	0.957

		-	-		
		OER	ORR	$\Delta E = E_{10} - E_{1/2}$	ЪĆ
Catalysts	Electrolyte	$E_{10}(V)$	E _{1/2} (V)	(V)	Reference
S-Co _{2.5} Fe _{7.5}	0.1 M KOH	1.62	0.62	1.00	This work
S-Co ₅ Fe ₅	0.1 M KOH	1.53	0.79	0.74	This work
S-Co _{7.5} Fe _{2.5}	0.1 M KOH	1.56	0.72	0.84	This work
RuO ₂	0.1 M KOH	1.60	0.31	1.29	This work
Pt/C	0.1 M KOH	1.73	0.87	0.86	This work
FeCo/Co ₂ P@NPCF	0.1 M KOH	1.56	0.79	0.77	9
NiCo ₂ O ₄	0.1 M KOH	1.64	0.77	0.87	10
CoDNG900	0.1 M KOH	1.613	0.864	\sim 0.75	11
NiO/NiCo ₂ O ₄	0.1 M KOH	1.587	0.73	0.857	2
Co@Co ₃ O ₄ /NC-1	0.1 M KOH	1.65	0.80	0.85	12
Co(OH) ₂ +N-rGO	0.1 M KOH	1.66	0.79	0.87	13
CoO@Co/N-rGO	0.1 M KOH	1.64	0.73	0.91	14
NiFe-LDH/Fe-N-C (1:1)	0.1 M KOH	1.515	0.728	0.787	15
Fe@N-C-700	0.1 M KOH	1.71	0.83	0.88	16
$Co_3O_4/2.7Co_2MnO_4$	0.1 M KOH	1.77	0.68	1.09	17
Co ₃ FeS _{1.5} (OH) ₆	0.1 M KOH	1.588	0.721	0.867	18
CuS/NiS ₂	0.1 M KOH	1.52	0.73	0.79	19
FeCo-Co ₄ N/N-C	0.1 M KOH	1.51	0.76	0.75	20
PPy/FeTCPP/Co	0.1 M KOH	1.61	0.86	0.75	21
Ni/NiO/NiCo ₂ O ₄ /		1.60	0.74	0.96	22
N-CNT-As	0.1 M KOH	1.00	0./4	0.80	22

Table S5 Comparison of OER/ORR bi-functional activities for the as-preparedcatalysts in this study with the other reported catalysts in literatures.

	1	5		
Catalysts	η_{onset}	η_{10}	Tafel slope	Deference
	(mV)	(mV)	(mV dec ⁻¹)	Kelefence
S-Co _{2.5} Fe _{7.5}	160	280	132	This work
S-Co ₅ Fe ₅	57	161	109	This work
S-Co _{7.5} Fe _{2.5}	108	238	122	This work
Pt/C	16	106	44	This work
PPy/FeTCPP/Co		240	83	21
FeNi/NPC		260	112	23
Co@Co-N-C	78	314	59	24
SHG	230	310	112	25

Table S6 Comparison of HER performance in 0.1 M KOH for the as-prepared catalysts in this study with the other reported catalysts in literatures.

Table S7 EIS parameters obtained by fitting the Nyquist plots to the equivalent circuitmodel in 0.1 M KOH at -0.1 V vs. RHE.

Catalysts	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega ight)$	Q_1 (F cm ⁻²)	n ₁
S-Co _{2.5} Fe _{7.5}	8.250	31.350	0.0307	0.714
S-Co ₅ Fe ₅	2.451	15.970	0.0337	0.622
S-Co _{7.5} Fe _{2.5}	5.253	31.560	0.0220	0.766

•				
Catalysts	Flectrolyte	Cell voltage	Pafaranca	
Catalysis	Electrolyte	E ₁₀ (V)		
S-C0 _{2.5} Fe _{7.5} "S-C0 _{2.5} Fe _{7.5}	0.1 M KOH	1.84	This work	
S-Co ₅ Fe ₅ "S-Co ₅ Fe ₅	0.1 M KOH	1.62	This work	
S-C07.5Fe2.5 S-C07.5Fe2.5	0.1 M KOH	1.76	This work	
RuO _{2 II} Pt/C	0.1 M KOH	1.69	This work	
CoFe@NC/NCHNSs-700		1 ((5	26	
CoFe@NC/NCHNSs-700	ТМКОН	1.005	20	
CoFe@N-GCNCs-700		1 (2	27	
CoFe@N-GCNCs-700	ТМКОН	1.63	27	
CoFe-N-CNTs/CNFs-900		1.66	20	
CoFe-N-CNTs/CNFs-900	Т М КОН	1.66	28	
$Ni_3S_2 \parallel Ni_3S_2$	1 M KOH	1.63	29	
Co _{0.85} Se/NF ¹¹ ₁₁ Co _{0.85} Se/NF	1 M KOH	1.63	30	

Table S8 Comparison of HER/OER bi-functional activities for the as-preparedcatalysts in this study with the other reported catalysts in literatures.

ZaAD	OCD(M)	Peak power density	Defenence
ZIIAD	OCP(V)	(mW cm ⁻²)	Kelerence
Zn plate S-Co ₅ Fe ₅	1.46	179	This work
Zn plate CoFe/N-HCSs	1.387	96.5	31
Zn plate CoFe/FeNC		154.1	32
Zn plate CoFe@NO-CNT	1.45	142	33
Zn plate NPSC-Co ₂ Fe ₁	1.44	174.6	34
Zn plate CoFe@N-CNWF	1.46	90	35
Zn plate CoO _x @NOC	1.44	141.65	36
Zn plate Co-MOF-800	1.38	144	37
Zn plate NCFPO-350	1.36	74.6	38
Zn plate AlFeCoNiMn	1.44	136	39
Zn plate $_{II}^{II}$ CuCo ₂ S ₄	1.38	123.9	40

Table S9 Comparison of ZnAB performance using $S-Co_5Fe_5$ as cathode catalyst with the other reported catalysts in literatures.

REFERENCES

- S. Li, X. Yang, S. Yang, Q. Gao, S. Zhang, X. Yu, Y. Fang, S. Yang and X. Cai, J. Mater. Chem. A, 2020, 8, 5601-5611.
- 2 Z. Zhang, X. Liang, J. Li, J. Qian, Y. Liu, S. Yang, Y. Wang, D. Gao and D. Xue, ACS Appl. Mater. Interfaces, 2020, 12, 21661-21669.
- 3 Q. Lu, H. Wu, X. Zheng, Y. Chen, A. L. Rogach, X. Han, Y. Deng and W. Hu, Adv. Sci., 2021, 8, 2101438.
- X. Zheng, X. Han, Y. Cao, Y. Zhang, D. Nordlund, J. Wang, S. Chou, H. Liu, L. Li,
 C. Zhong, Y. Deng and W. Hu, *Adv. Mater.*, 2020, **32**, 2000607.
- 5 X. Liu, X. Li, M. An, Y. Gao, Z. Cao and J. Liu, *Electrochim. Acta*, 2020, **351**, 136249.
- 6 J. Sun, L. Du, B. Sun, G. Han, Y. Ma, J. Wang, H. Huo, P. Zuo, C. Du and G. Yin, J. Energy Chem., 2021, 54, 217-224.
- 7 W. Liu, D. Rao, J. Bao, L. Xu, Y. Lei and H. Li, *J. Energy Chem.*, 2021, 57, 428-435.
- 8 H. Li, J. Wang, R. Qi, Y. Hu, J. Zhang, H. Zhao, J. Zhang and Y. Zhao, *Appl. Catal. B*, 2021, **285**, 119778.
- 9 Q. Shi, Q. Liu, Y. Ma, Z. Fang, Z. Liang, G. Shao, B. Tang, W. Yang, L. Qin and X. Fang, Adv. Energy Mater., 2020, 10, 1903854.
- J. Béjar, L. Álvarez-Contreras, J. Ledesma-García, N. Arjona and L. G. Arriaga, J. Mater. Chem. A, 2020, 8, 8554-8565.
- 11 A. Wang, C. Zhao, M. Yu and W. Wang, Appl. Catal. B, 2021, 281, 119514.
- 12 A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. Botz, R. A. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem. Int. Ed. Engl.*, 2016, **55**, 4087-4091.
- 13 Y. Zhan, G. Du, S. Yang, C. Xu, M. Lu, Z. Liu and J. Y. Lee, ACS Appl. Mater. Interfaces, 2015, 7, 12930-12936.
- 14 X. X. Liu, J. B. Zang, L. Chen, L. B. Chen, X. Chen, P. Wu, S. Y. Zhou and Y. H. Wang, J. Mater. Chem. A, 2017, 5, 5865-5872.
- 15 S. Dresp, F. Luo, R. Schmack, S. Kühl, M. Gliech and P. Strasser, Energy Environ.

Sci., 2016, 9, 2020-2024.

- 16 J. Wang, H. Wu, D. Gao, S. Miao, G. Wang and X. Bao, *Nano Energy*, 2015, 13, 387-396.
- 17 D. Wang, X. Chen, D. G. Evans and W. Yang, Nanoscale, 2013, 5, 5312-5315.
- 18 H. F. Wang, C. Tang, B. Wang, B. Q. Li and Q. Zhang, Adv. Mater., 2017, 29, 1702327.
- 19 L. An, Y. Li, M. Luo, J. Yin, Y.-Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi and S. Guo, *Adv. Funct. Mater.*, 2017, 27, 1703779.
- 20 X. Zhu, T. Jin, C. Tian, C. Lu, X. Liu, M. Zeng, X. Zhuang, S. Yang, L. He, H. Liu and S. Dai, *Adv. Mater.*, 2017, **29**, 1704091.
- 21 J. Yang, X. Wang, B. Li, L. Ma, L. Shi, Y. Xiong and H. Xu, Adv. Funct. Mater., 2017, 27, 1606497.
- 22 N. Ma, Y. Jia, X. Yang, X. She, L. Zhang, Z. Peng, X. Yao and D. Yang, J. Mater. Chem. A, 2016, 4, 6376-6384.
- 23 H.-X. Zhong, J. Wang, Q. Zhang, F. Meng, D. Bao, T. Liu, X.-Y. Yang, Z.-W. Chang, J.-M. Yan and X.-B. Zhang, *Adv. Sustainable Syst.*, 2017, 1, 1700020.
- 24 Y. Wang, Y. Nie, W. Ding, S. G. Chen, K. Xiong, X. Q. Qi, Y. Zhang, J. Wang and Z. D. Wei, *Chem. Commun.*, 2015, **51**, 8942-8945.
- 25 C. Hu and L. Dai, Adv. Mater., 2017, 29, 1604942.
- 26 S. Wang, H. Wang, C. Huang, P. Ye, X. Luo, J. Ning, Y. Zhong and Y. Hu, *Appl. Catal. B*, 2021, **298**, 120512.
- 27 H.-J. Niu, Y.-P. Chen, R.-M. Sun, A.-J. Wang, L.-P. Mei, L. Zhang and J.-J. Feng, *J. Power Sources*, 2020, **480**, 229107.
- 28 S. Wang, J. Wang, X. Wang, L. Li, J. Qin and M. Cao, J. Energy Chem., 2021, 53, 422-432.
- 29 X. Zheng, X. Han, Y. Zhang, J. Wang, C. Zhong, Y. Deng and W. Hu, *Nanoscale*, 2019, **11**, 5646-5654.
- 30 W. Ding, Y. Cao, H. Liu, A. Wang, C. Zhang and X. Zheng, *Rare Met.*, 2021, 40, 1373-1382.
- 31 J. Li, Y. Kang, W. Wei, X. Li, Z. Lei and P. Liu, Chem. Eng. J., 2021, 407, 127961.

- 32 Z. Peng, H. Wang, X. Xia, X. Zhang and Z. Dong, ACS Sustainable Chem. Eng., 2020, 8, 9009-9016.
- 33 M. Li, S. Chen, B. Li, Y. Huang, X. Lv, P. Sun, L. Fang and X. Sun, *Electrochim. Acta*, 2021, **388**, 138587.
- 34 K. He, J. Zai, X. Liu, Y. Zhu, A. Iqbal, T. Tadesse Tsega, Y. Zhang, N. Ali and X. Qian, *Appl. Catal. B*, 2020, **265**, 118594.
- 35 Q. Zhou, L. Ai, Q. Li, S. Hou, L. Xu, D. Sun, H. Pang, K. Huang and Y. Tang, *Chem. Eng. J.*, 2021, **417**, 127895.
- 36 M. E. Hilal, H. A. Younus, S. Chaemchuen, S. Dekyvere, X. Zen, D. He, J. Park,
 T. Han and F. Verpoort, *Catal. Sci. Technol.*, 2021, 11, 4149-4161.
- 37 X. Duan, N. Pan, C. Sun, K. Zhang, X. Zhu, M. Zhang, L. Song and H. Zheng, J. *Energy Chem.*, 2021, 56, 290-298.
- 38 D.-S. Pan, P. Chen, L.-L. Zhou, J.-H. Liu, Z.-H. Guo and J.-L. Song, J. Power Sources, 2021, 498, 229859.
- 39 S. Li, X. Zhou, G. Fang, G. Xie, X. Liu, X. Lin and H.-J. Qiu, ACS Appl. Energy Mater., 2020, 3, 7710-7718.
- 40 R. Zhang, Z. Hu, S. Cheng, W. Ke, T. Ning, J. Wu, X. Fu and G. Zhu, *Inorg. Chem.*, 2021, **60**, 6721-6730.