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Experimental Details

Material Characterization

The X-ray diffraction (XRD) patterns were taken in reflection mode (Cu Kα radiation) 

on a Rigaku D/MAX-2500 diffractometer. The transmission electron microscopy 

(TEM) images were obtained by a scanning transmission electron microscope (JEOL 

3010). X-ray photoelectron spectroscopy (XPS) spectra were recorded on AXIS-HSi 

spectroscope (Kratos Analytical) with a monochromated Al Kα X-ray source (1486.7 

eV). The UV‐vis diffuse reflectance spectra were recorded using a UV‐vis 
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spectrophotometer and barium sulfate as the reflectance standard. Fourier transform 

infrared spectroscopy (FT-IR) were collected on Perkin-Elmer FTIR 

spectrophotometer (ThermoSmart-iTR) in the range of 4000-400 cm-1 using KBr 

technique. Photoluminescence spectra were performed using an Fluoromax-3 

spectrometer (Horiba Scientific) with excitation wavelength of 350nm.

Photocatalytic H2 production performance

The photocatalytic H2 evolution was evaluated under visible light. All the 

photocatalytic measurements were executed in a closed gas evacuation and circulation 

catalytic reaction system equipped with a top-irradiation optical quartz window. 

Generally, 20 mg catalyst was suspended in a mixed solution of 90 ml distilled water 

and 10 ml triethanolamine (TEOA) by a magnetic stirrer. The suspension was purged 

with an argon flux for 30 min prior to irritation to remove the air and ensure the 

anaerobic condition. A 300 W Xe lamp was served as visible-light source with a filter 

(λ > 420 nm), and the temperature of the reaction systems was kept around the room 

temperature by a flowing of cooling during the test. During irradiation, the evolved H2 

gas was collected every hour and quantified by a gas chromatography using thermal 

conductivity detector (TCD). 

Photoelectrochemical Measurement.

The photoelectrochemical tests were performed using an electrochemical working 

station (CHI760E) in 0.5 M Na2SO4 with Pt foil and Ag/AgCl electrode as counter 

and reference electrodes, respectively, within a three-electrode cell. The photocatalyst 

coated at ITO glass as a working electrode. A 300 W Xe lamp with a filter (λ > 420 

nm) was applied as the light source.



Fig.S1 TEM image of CN

Fig.S2 EDS of DCN-Ni2



Fig. S3 XPS spectra of C 1 s over CN-Ni2

Fig. S4 The control experiments with different experiment condition 



Fig S5. XRD patterns of DCN-Ni2 before and after reaction.

Fig S6. FT-IR of DCN-Ni2 before and after reaction.



Table S1. The control experiments with different experiment condition

Sample Sacrificial agent Light H2 evolution
DCN-Ni2 TEOA xenon lamp 441 μmol h-1g-1

Without TEOA xenon lamp 0
DCN-Ni2 TEOA without 0
DCN-Ni2 without xenon lamp 0

  
Table S2. Compare with several reported catalyst used for hydrogen generation. 

Sample Efficiency of H2 evolution Ref.
DCN-Ni2 441 μmol h-1g-1 This work

Ni@g-C3N4 168.2 μmol h-1g-1 1
Ni NPs on g-C3N4 440.8 μmol h-1g-1 2

FeP/g-C3N4 77.9 μmol h-1g-1 3
ZnO/Fe2O3/g-C3N4 250 μmol h-1g-1 4

CuO/g-C3N4 30.8μmol h-1g-1 5
In2O3@g-C3N4 258.8 μmol h-1g-1 6
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