Supplementary Materials

Nanocrystalline Rhenium-doped TiO₂: an efficient catalyst in the one-pot conversion of carbohydrates to levulinic acid. The synergistic effect between Brønsted and Lewis acid sites

Sorin Avramescu^a, Cristian D. Ene^b, Madalina Ciobanu^b, Josefine Schnee^c, Francois Devred^d, Cristina Bucur^e, Eugeniu Vasile^f, Luke Colaciello^g, Ryan Richards^{g*}, Eric M. Gaigneaux^{d*}, Marian Nicolae Verziu^{h,i*}

^a Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest 030016, Romania ^b "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania ^cNormandie Université, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, Boulevard Maréchal Juin 6, 14000 Caen, France ^d Institute of Condensed Matter and Nanosciences (IMCN) – Molecular Chemistry, Materials and Catalysis (MOST) – Université catholique de Louvain (UCLouvain), Place Louis Pasteur 1, box L4.01.09, 1348 Louvain-la-Neuve, Belgium, eric.gaigneaux@uclouvain.be ^e National Institute of Materials Physics, Atomistilor 105b, 077125 Magurele-Ilfov, Romania ^fFaculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh Polizu Street, Bucharest, 011061, Romania ^g Colorado School of Mines, Department of Chemistry, Golden, Colorado 80401, USA, rrichard@mines.edu ^h Institute of Organic Chemistry "C. D. Nenitescu" of Romanian Academy, 202B Spl. Independentei, P.O. Box 35-108, Bucharest, Romania ⁱ Department of Bioresources and Polymer Science, Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-

7 Gh. Polizu Street, Bucharest, 011061, Romania, marian.verziu@upb.ro

Fig. S1. Nitrogen adsorption and desorption isotherms for 0%Re-TiO₂, 2% Re- TiO₂ and 10% Re-TiO₂

Fig. S2. Scanning electron microscopy (SEM) images of a) undoped TiO_2 nanoparticles (fresh), b) 2% Re- doped TiO_2 nanoparticles (fresh) c) 10% Re-doped TiO_2 nanoparticles (fresh) and d) 10% Re- doped TiO_2 nanoparticles (spent).

Fig. S3. Elemental mapping of Ti, O and Re for TiO_2 and 10%Re- TiO_2 taken from the area of the SEM shown in the inset of figure (SE1)

Fig. S4. Determination of band gaps for 10% Re-TiO₂ (a), 2%Re-TiO₂ (b) and 0%Re-TiO₂ (c)

Fig. S5. XPS spectra of O1s for: 0%Re-TiO₂; 2%Re-TiO₂ and 10% Re-TiO₂

Fig. S6. Thermal curves (TG, DTG, and DSC) of undoped TiO₂

Fig. S7. Thermal curves (TG, DTG, and DSC) of the 2%Re-TiO₂ material

Fig. S8. Thermal curves (TG, DTG, and DSC) of the 10%Re-TiO₂ material

Fig. S9. In situ FTIR spectra for 10% Re-TiO₂ catalyst concerning desorption of pyridine at room temperature (RT) and 200 0 C

Fig. S10. Raman spectra for 10%Re-TiO₂ (tested at 210 °C) (a), 10%Re-TiO₂ (fresh) (b) and 0%Re-TiO₂ (fresh) (c)

Fig. S11. XPS spectra of the Ti (2p) and Re (4f) level for 10%Re-TiO₂ tested at 210 °C