Electronic Supplementary Information

Experiment Section

Materials: Sodium molybdate dihydrate (Na₂MoO₄·2H₂O), titanium (IV) isopropoxide (C₁₂H₂₈O₄Ti) and potassium hydroxide (KOH) were purchased from Aladdin Industrial Co., isopropyl alcohol (C₃H₈O) was obtained from Zhiyuan Chemical Reagent Co.. Nafion solution (5 wt%) was purchased from Sigma-Aldrich. All chemicals were used as received without further purification.

Synthesis of Mo-TiO₂ and TiO₂: Na₂MoO₄·2H₂O (0.447 g) was dissolved in 20 mL deionized water and vigorously stirred for 10 min. Then 6 mL titanium (IV) isopropoxide was added to the solution drop by drop and continued to stir for 1 h at 80°C. The resulting solution was transferred to a 40 mL Teflon autoclave, and heated at 180°C for 12 h in an oven. The product (Mo-TiO₂-2) was collected by centrifugation and washed with deionized water and ethanol, and then dried at 60°C in a vacuum oven. Moreover, different proportions of Mo doping were synthesized by the same method (0.212 g Na₂MoO₄·2H₂O named Mo-TiO₂-1, 1.007 g Na₂MoO₄·2H₂O named Mo-TiO₂-3). For comparison, pure TiO₂ was synthesized by the similar method without Na₂MoO₄·2H₂O.

Characterization: The morphologies and microstructures were investigated by transmission electron microscopy (TEM, FEI TF20). X-ray diffraction (XRD) patterns were obtained from an XRD-6100 (XRD, Shimadzu XRD-6100) with Cu Kα source radiation at a scanning rate of 5° min⁻¹ from 10° to 80°. The surface properties of the samples were studied by X-ray photoelectron spectroscopy (XPS, ESCALABMK II). The absorbance data of spectrophotometer were acquired on Ultraviolet-visible (UV-Vis) spectrophotometer (Shimadzu UV-2700). Electron paramagnetic resonance (EPR) spectra were obtained on a Bruker 500 spectrometer at 77 K.

Electrochemical measurements: 10 mg of Mo-TiO₂ or TiO₂ powder was mixed with

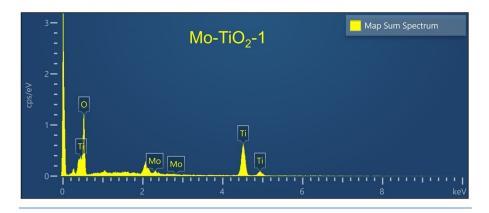
20 uL 5wt% Nafion solution and ultrasonically dispersed in 0.98 mL isopropyl alcohol solution. Then, 10 μ L the catalyst ink was loaded onto a pre-polished glassy carbon electrode (D = 5.6 mm) of a rotation ring disk electrode (RRDE) to achieve a catalyst loading \approx 0.4 mg cm⁻². All electrochemical were carried on CHI 760E (CHI Instruments Inc.). The RRDE loaded with electrocatalyst, graphite rod and Hg/HgO (saturation KOH) were used as the working electrode, counter electrode and reference electrode, respectively. The electrolyte was 0.1 M KOH. The linear sweep voltammetry (LSV) was tested by RRDE scans from 0 to 1.0 V versus reversible hydrogen electrode (V_{RHE}) in O₂-saturated 0.1 M KOH at a scan rate of 10 mV s⁻¹ and a rotation speed of 1600 rpm. During the LSV, the Pt ring potential was held at 1.2 V_{RHE}. The electrochemical impedance spectroscopy (EIS) was conducted at 0.65 V_{RHE} from 1,000,000 to 0.1 Hz. The H₂O₂ selectivity (H₂O₂ (%)) and electron transfer number (n) were calculated from the RRDE measurement according to following equation:

$$H_2O_2$$
 (%) = 200×(I_{Ring}/N)/($I_{Disk}+I_{Ring}/N$) (1)

$$n = 4I_{\text{Disk}}/(I_{\text{Disk}}+I_{\text{Ring}}/N)$$
(2)

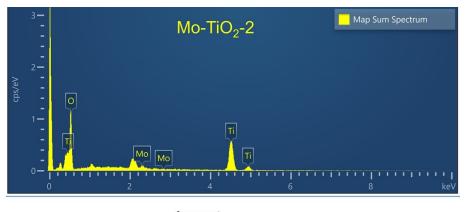
Where I_{Disk} is the measured current of disk electrode, I_{Ring} is the measured current of Pt ring electrode, N is the collection efficiency of Pt ring (0.37).

Electrogeneration of H_2O_2 : The electrogeneration of H_2O_2 were conducted in H-type cell with nafion membrane as separator. Cathode was prepared by depositing catalyst ink (10 µL, 10 mg mL⁻¹) on a carbon paper (CP) (1×1 cm). Hg/HgO (saturation KOH) and graphite rod were used as the reference electrode and counter electrode, respectively. The electrolyte was O_2 -saturated 0.1 M KOH (30 mL). H_2O_2 yield was measured by using the indicator of Ce(SO₄)₂ (2Ce⁴⁺ + H₂O₂ \rightarrow 2Ce³⁺ + 2H⁺ + O₂). Samples (200 µL test electrolyte) were collected at a certain time (1 h) and mixed with the Ce⁴⁺ solution (0.1 mM, 5.8 mL). The mixed solution was detected with UVvis spectrophotometer. A typical concentration-absorbance curve was calibrated by linear fitting the absorbance values at wavelength length of 318 nm for various standard concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 mM of Ce⁴⁺. The fitting curve (y = 4.3365 x – 0.00881, R²= 0.999) shows good linear relation of absorbance value with Ce⁴⁺ concentration (Fig. S13). The yield of H_2O_2 was finally determined based on the reduced Ce⁴⁺ concentration.


The density functional theory (DFT) calculation details: The first principle calculations were performed to reveal the mechanism of ORR on the surface of Mo-TiO₂ by using the Vienna ab initio simulation package (VASP).^{1,2} The generalized gradient approximation method of Perdew-Burke-Ernzerhof (PBE) functional was used to describe the exchange-related interaction between electrons.³ U (Ti_{3d}) value of 3.5 eV and U (Mo_{3d}) value of 3.0 eV were applied to the Ti_{3d} and Mo_{3d} states.^{4,5} The van der Waals (vdW) correction with the Grimme approach (DFT-D2) was included in the interaction between single molecule/atoms and substrates.⁶ The energy cutoff for the plane wave-basis expansion was set to 500 eV. The convergence criteria for the total energy and the Hellmann-Feynman force were 10^{-5} eV and 0.02 eVÅ⁻¹, respectively. The TiO₂ (101) surface was modeled using a 2 × 2 slab with four trilayers (O-Ti-O) that the bottom trilayer is fixed, separated by 15 Å of vacuum. The Brillouin zone was sampled with 3 × 3 × 1 Gamma-center k-point mesh.

The formation energies of oxygen vacancy on Mo-TiO₂ (101) are defined as an equation:

$$E_{f} = E(Mo-TiO_{m}) + E(O_{2})/2 - E(Mo-TiO_{m-1})$$
 (3)


Where E_f is the formation energy, $E(Mo-TiO_m)$ and $E(Mo-TiO_{m-1})$ is the total energies without and with oxygen vacancy, $E(O_2)$ is the total energy of single oxygen gas, *m* is the number of O atoms in surface supercell.

The computational hydrogen electrode model has been adopted for calculations of the Gibbs free-energy change for the relevant elemental steps, which can be obtained by $\Delta G = \Delta E + \Delta E_{ZPE} - T\Delta S$, where ΔE is the total energy, ΔE_{ZPE} is the zero point energy and S is the entropy at 298.15 K. The theoretical overpotential (η) of 2e⁻ ORR was deduced using the equation of $\eta = |\Delta G_{*OOH}/e - 4.22 \text{ V}|$. The solvation effect was not considered in determining the value of ΔG_{*OOH} , which governs a reasonable comparison.

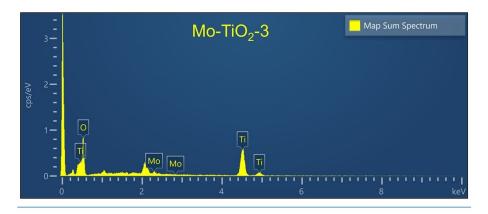

Element	Line Type	Apparent Concentration	k Ratio	Wt%	Atomic %
0	K series	66.54	0.22390	37.33	64.71
Ті	K series	117.38	1.17377	59.24	34.30
Мо	L series	6.06	0.06058	3.43	0.99
Total:				100.00	100.00

Fig. S1. EDX spectrum of Mo-TiO₂-1.

Element	Line Type	Apparent Concentration	k Ratio	Wt%	Atomic %
0	K series	64.33	0.21648	37.38	64.96
Ti	K series	110.42	1.10415	58.12	33.73
Мо	L series	7.61	0.07614	4.50	1.30
Total:				100.00	100.00

Fig. S2. EDX spectrum of Mo-TiO₂-2.

Element	Line Type	Apparent Concentration	k Ratio	Wt%	Atomic %
0	K series	46.52	0.15654	31.04	58.25
Ті	K series	117.19	1.17192	64.27	40.28
Мо	L series	7.60	0.07605	4.69	1.47
Total:				100.00	100.00

Fig. S3. EDX spectrum of Mo-TiO₂-3.

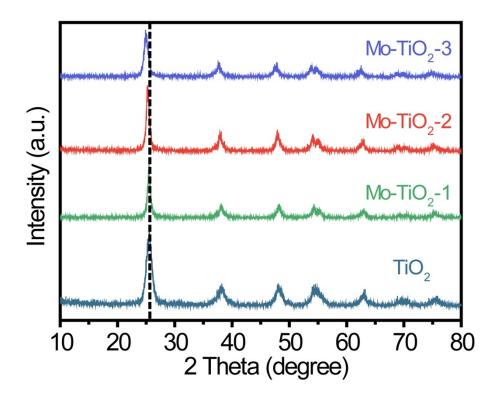


Fig. S4. XRD patterns of TiO_2 , Mo- TiO_2 -1, Mo- TiO_2 -2 and Mo- TiO_2 -3.

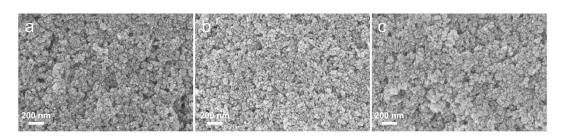


Fig. S5. SEM images of (a) Mo-TiO₂-1, (b) Mo-TiO₂-2 and (c) Mo-TiO₂-3.

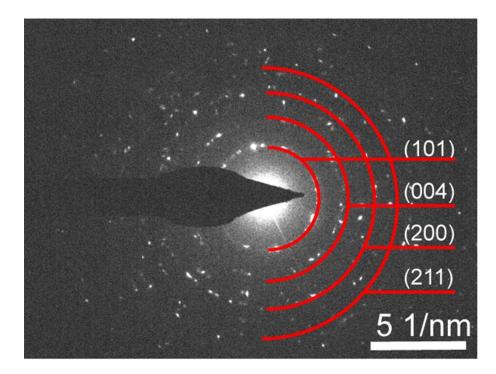
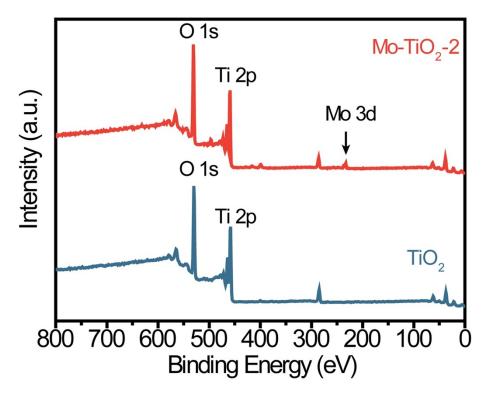



Fig. S6. SAED pattern of Mo-TiO₂-2.

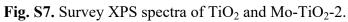


Fig. S8. Tafel plots of TiO_2 and Mo- TiO_2 -2 in 0.1 M KOH.

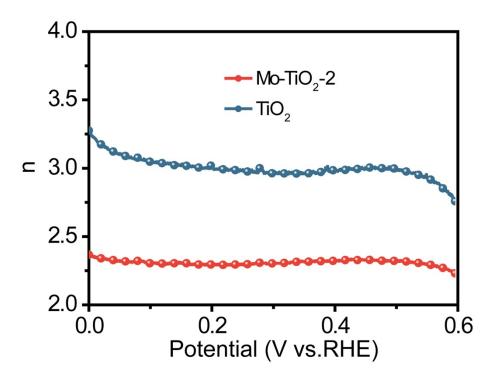


Fig. S9. Electron transfer numbers (n) for TiO_2 and Mo- TiO_2 -2.

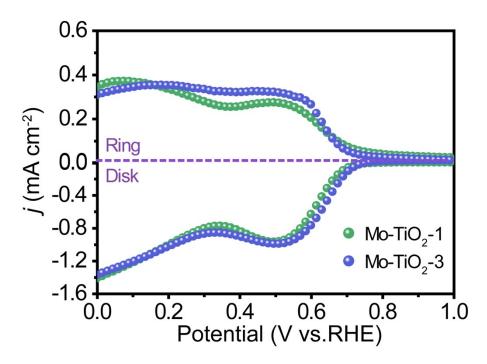


Fig. S10. LSV curves of Mo-TiO₂-1 and Mo-TiO₂-3.

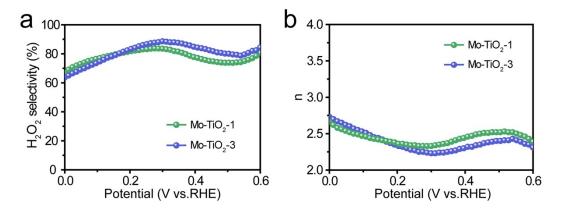


Fig. S11. (a) H_2O_2 selectivity and (b) electron transfer numbers (n) of Mo-TiO₂-1 and Mo-TiO₂-3.

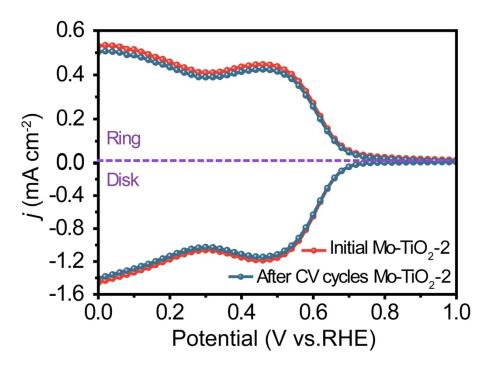


Fig. S12. LSV curves of Mo-TiO₂-2 for 3000 CV cycles before and after.

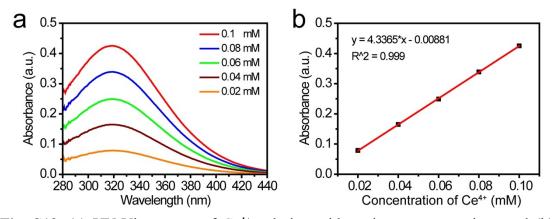


Fig. S13. (a) UV-Vis spectra of Ce^{4+} solution with various concentrations and (b) corresponding standard curve.

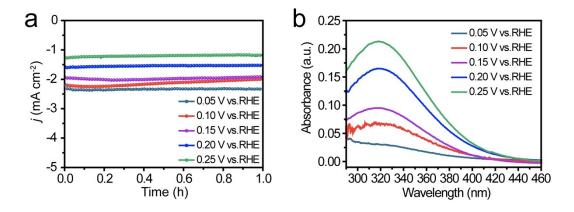
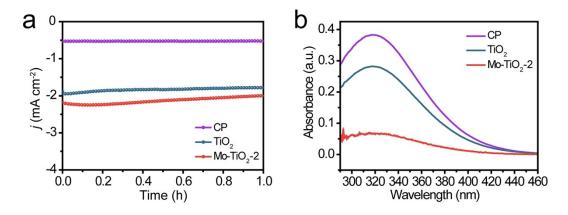
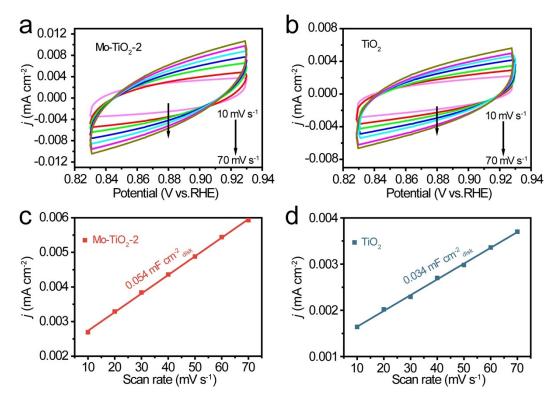




Fig. S14. (a) Time-dependent current density curves of $Mo-TiO_2-2$ under various potentials for 1 h. (b) UV-Vis spectra of electrolyte with various potential.

Fig. S15. (a) Time-dependent current density curves of pure CP, TiO_2 and $Mo-TiO_2-2$ for 1 h. (b) UV-Vis spectra of electrolyte for pure CP, TiO_2 and $Mo-TiO_2-2$.

Fig. S16. CV curves for (a) Mo-TiO₂-2 and (b) TiO₂ in the double layer region at scan rates of 10, 20, 30, 40, 50, 60 and 70 mV s⁻¹ in 0.1 M KOH. Capacitive currents as a function of scan rate for (c) Mo-TiO₂-2 and (d) TiO₂ at 0.88 V_{RHE} .

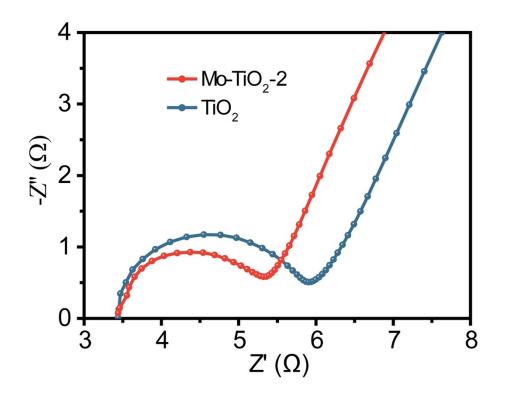


Fig. S17. Nyquist plots of TiO_2 and Mo- TiO_2 -2.

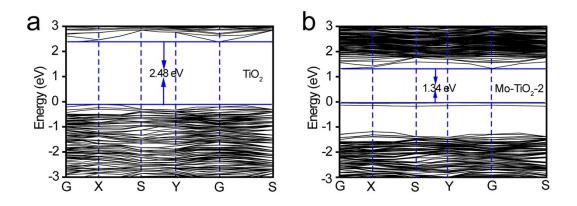


Fig. S18. Band structures of (a) TiO_2 and (b) Mo- TiO_2 -2.



Fig. S19. (a) Front view and (b) vertical view of possible oxygen vacancy distributions of Mo-TiO₂ (101) surface.

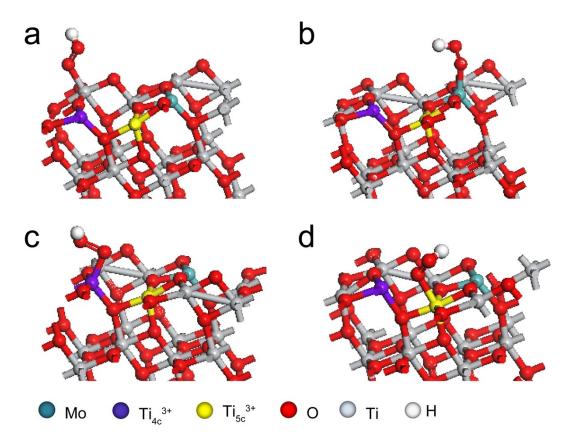
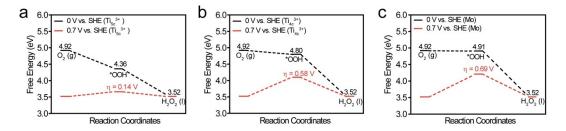



Fig. S20. Atom configurations of the *OOH absorption at (a) Ti^{4+} , (b) Mo, (c) Ti_{4c}^{3+} and (d) Ti_{5c}^{3+} sites.

Fig. S21. Free energy diagrams with the theoretical overpotentials (η) of the 2e⁻ ORR at the zero potential (black line) and the equilibrium potential (red line) for (a) Ti_{5c}³⁺, (b) Ti_{4c}³⁺ and (c) Mo sites.

Catalyst	Electrolyte	Selectivity@potential (% @ V _{RHE})	Productivity	Ref.	
Mo-TiO ₂ -2		86@0.2	395.3 mmol g _{cat} ⁻¹ h ⁻¹	This	
TiO ₂	0.1 M KOH	52@0.3	134.1 mmol g_{cat}^{-1} h ⁻¹	work	
TiO ₂ -Au/C 3%	1.0 M NaOH	75	/	7	
Au/TiO ₂	0.1 M KOH	90@0.1	/	8	
CuO _x /G-30	1.0 M KOH	80@0.5	/	9	
Fe ₃ O ₄ /Printex	1.0.14 2011	68@0.4	/	10	
Fe ₃ O ₄ /graphene	1.0 M KOH	62@0.4	/		
Nb ₂ O ₅ -rGO	0.1 M NaOH	74.9@0.4	/	11	
4% CeO ₂ /C-PPM-P	1.0 M NaOH	88	/	12	
$Sr_{0.7}Na_{0.3}Si_{0.95}Cu_{0.05}O_{3}$	0.1 M KOH	78@0.4	/	13	
O-CNTs	0.1 M KOH	88@0.4	111.7 mmol g_{cat}^{-1} h ⁻¹	14	
HPCS-S	0.1 M KOH	71@0.4	$0.184 \text{ mol } g_{cat}^{-1} \text{ h}^{-1}$	15	
Col-NG(O)	0.1 M KOH	80@0.4	${\sim}418 \text{ mmol } g_{\text{cat}}^{-1} \text{ h}^{-1}$	16	
Ni MOF NSs-6	0.1 M KOH	95@0.5	80 mmol g_{cat}^{-1} h ⁻¹	17	
rGO/PEI	0.1 M KOH	90.7@0.74	$0.106 \text{ mol } g_{cat}^{-1} \text{ h}^{-1}$	18	
OCB-120	0.1 M KOH	63.5@0.36	/	19	
G/CDs	0.1 M KOH	71-82@0.35-0.72	/	20	
oxo-G/NH ₃ ·H ₂ O	0.1 M KOH	>82	224.8 mmol g_{cat}^{-1} h ⁻¹	21	
G-COF-950	0.1 M KOH	75	1286.9 mmol g ⁻¹ h ⁻¹	22	
5-Ni ₃ (HITP) ₂	0.1 M KOH	80	/	23	
Pt-Ag alloy	0.05 M Na ₂ SO ₄ (pH = 3)	70-90	236.25 mol kg ⁻¹ h ⁻¹	24	
$Pd^{\delta+}$ -OCNT	0.1 M HClO ₄	95-98@0.3-0.7	1701 mol kg ⁻¹ h ⁻¹	25	
Pt–Hg	0.1 M HClO ₄	96@0.2-0.4	/	26	
a-TiO _{2-x} /TiC	0.1 M KOH	94@0.5	7.19 mol $g_{cat}^{-1} h^{-1}$	27	

Table S1. Comparison of performance for $Mo-TiO_2$ with other reported $2e^-$ ORR electrocatalysts.

References

- 1 G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15–50.
- 2 G. Kresse and J. Furthmüller, *Phys. Rev. B*, 1996, **54**, 11169.
- 3 J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- 4 A. Tilocca and A. Selloni, J. Phys. Chem. C, 2012, **116**, 9114–9121.
- 5 M. García-Mota, A. Vojvodic, F. Abild-Pedersen and J. K. Nørskov, J. Phys. Chem. C, 2013, 117, 460–465.
- 6 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 7 F. V. E. Reis, V. S. Antonin, P. Hammer, M. C. Santos and P. H. C. Camargo, J. Catal., 2015, 326, 100–106.
- Z. Sun, L. Sheng, H. Gong, L. Song, X. Jiang, S. Wang, X. Meng, T. Wang and J. He, *Chem. Asian J.*, 2020, 15, 4280–4285.
- 9 H. Xiao, B. Li, M. Zhao, Y. Li, T. Hu, J. Jia and H. Wu, *Chem. Commun.*, 2021, 57, 4118–4121.
- 10 W. R. P. Barros, Q. Wei, G. Zhang, S. Sun, M. R. V. Lanza and A. C. Tavares, *Electrochim. Acta*, 2015, **162**, 263–270.
- J. F. Carneiro, M. J. Paulo, M. Siaj, A. C. Tavares and M. R. V. Lanza, J. Catal., 2015, 332, 51–61.
- 12 M. H. M. T. Assumpção, A. Moraes, R. F. B. D. Souza, M. L. Calegaro, M. R. V. Lanza, E. R. Leite and M. A. L. Cordeiro, *Electrochim. Acta*, 2013, **111**, 339–343.
- S. Thundiyil, S. Kurungot and R. N. Devi, ACS Appl. Mater. Interfaces, 2021, 13, 382–390.
- I4 Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. Lin,Y. Liu, T. F. Jaramillo, J. K. Nørskov and Y. Cui, *Nat. Catal.*, 2018, 1, 156–162.
- 15 G. Chen, J. Liu, Q. Li, P. Guan, X. Yu, L. Xing, J. Zhang and R. Che, *Nano Res.*, 2019, **12**, 2614–2622.
- 16 E. Jung, H. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. Kim, W. H. Antink,

S. Park, K. S. Lee, S. P. Cho, J. S. Yoo, Y. E. Sung and T. Hyeon, *Nat. Mater.*, 2020, **19**, 436–442.

- M. Wang, X. Dong, Z. Meng, Z. Hu, Y. Lin, C. Peng, H. Wang, C. Pao, S. Ding,
 Y. Li, Q. Shao and X. Huang, *Angew. Chem. Int. Ed.*, 2021, 60, 11190–11195.
- X. Xiao, T. Wang, J. Bai, F. Li, T. Ma and Y. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 42534–42541.
- 19 X. Lu, D. Wang, K.-H. Wu, X. Guo and W. Qi, J. Colloid Interface Sci., 2020, 573, 376–383.
- 20 Y. Dong, J. Su, S. Zhou, M. Wang, S. Huang, C.-H. Lu, H. Yang and F. Fu, *Chem. Commun.*, 2020, 56, 7609–7612.
- 21 L. Han, Y. Sun, S. Li, C. Cheng, C. E. Halbig, P. Feicht, J. L. Hübner, P. Strasser and S. Eigler, ACS Catal., 2019, 9, 1283–1288.
- 22 J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu and J. Qu, *Carbon*, 2020, 163, 154–161.
- 23 M. Liu, H. Zhang, Y. Li, H. Su, W. Zhou, X. Zhao, W. Cheng and Q. Liu, *Chem. Commun.*, 2020, 56, 5299–5302.
- 24 Y.-J. Ko, K. Choi, B. Yang, W. H. Lee, J.-Y. Kim, J.-W. Choi, K. H. Chae, J. H. Lee, Y. J. Hwang, B. K. Min, H.-S. Oh and W.-S. Lee, *J. Mater. Chem. A*, 2020, 8, 9859–9870.
- 25 Q. Chang, P. Zhang, A. H. B. Mostaghimi, X. Zhao, S. R. Denny, J. H. Lee, H. Gao, Y. Zhang, H. L. Xin, S. Siahrostami, J. G. Chen and Z. Chen, *Nat. Commun.*, 2020, 11, 2178.
- S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida,
 B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I.
 Chorkendorff, I. E. L. Stephens and J. Rossmeisl, *Nat. Mater.*, 2013, 12, 1137–1143.
- Z. Xu, J. Liang, Y. Wang, K. Dong, X. Shi, Q. Liu, Y. Luo, T. Li, Y. Jia, A. M. Asiri, Z. Feng, Y. Wang, D. Ma and X. Sun, *ACS Appl. Mater. Interfaces*, 2021, 13, 33182–33187.