Electronic Supplementary Information

A Unique Hierarchical Structure: NiCo₂O₄ Nanowire Decorated NiO

Nanosheets as a Carbon-Free Cathode for Li-O₂ Battery

Table of Contents

1. FESEM images of NiO (a, b, c, d) on Ni foam with different magnifications. (Fig.

S1)

2. FESEM images of NiCo₂O₄ (a, b, c, d) on Ni foam with different magnifications.

(Fig. S2)

3. FESEM images of NiO@NiCo₂O₄ (a, b, c, d) on Ni foam with different magnifications. (Fig. S3)

4. EDS spectrum of the NiO@NiCo₂O₄ on Ni foam. (Fig. S4)

5. EDS analysis of NiO@NiCo2O4 on Ni foam. (Table S1)

6. Comparison of the specific surface area, pore volume and BJH pore size of three

types of NiO, NiCo₂O₄ and NiO@NiCo₂O₄. (Table S2)

7. The discharge-charge curves of NiO@NiCo₂O₄-based electrodes with a fixed capacity of 1000 mA h g⁻¹ at a current density of 200 mA g⁻¹. (Fig. S5)
8. XRD patterns of NiO@NiCo₂O₄-based electrodes at the pristine time, after

discharge and after recharge process. (Current density: 200 mA g⁻¹) (Fig. S6)

9. FESEM images of NiO@NiCo₂O₄ electrodes at (a) the 1st cycle discharged, (b) the 1st cycle charged, (c) the 50th cycle discharged (d) the 50th cycle recharged (e) the 100th cycle discharged, (f) the 100th cycle recharged, (g) the 176th cycle discharged and (h) the 176th cycle recharged stages. (Fig. S7)

10. Raman patterns of discharged/charged NiO@NiCo2O4 electrodes at the 1st cycle

(a), at the 50th cycle (b), at the 100th cycle (c), at the 176th cycle (d). (Fig. S8)

11. Nyquist plots of NiO@NiCo₂O₄ electrodes at fresh, 1st cycle discharged, 1sr cycle recharged, and 176th cycle recharged states. (Fig. S9)

12. Comparison of the Li- O_2 battery performance of NiO@NiCo₂O₄ cathode with those of NiO-based and NiCo₂O₄-based cathodes reported in the literature. **(Table S3)**

Fig. S1 FESEM images of NiO (a, b, c, d) on Ni foam with different magnifications.

Fig. S2 FESEM images of NiCo₂O₄ (a, b, c, d) on Ni foam with different magnifications.

Fig. S3 FESEM images of NiO@NiCo₂O₄ (a, b, c, d) on Ni foam with different magnifications.

-	0
Elements	NiO@NiCo2O4 (wt%)
0	18.8
Co	15.55
Ni	65.65
Total	100

 Table S2 Comparison of the specific surface area, pore volume and BJH pore size of three types of NiO, NiCo₂O₄ and NiO@NiCo₂O₄.

V 1			
Material	Surface area	Pore	BJH Pore size
	(m^2/g)	volume(cm ³ /g)	(nm)
NiO	6.96	3.32*10 ⁻²	5.79
NiCo ₂ O ₄	3.13	$1.82*10^{-2}$	9.53
NiO@NiCo2O4	19.40	$2.56*10^{-2}$	2.52

Fig S5 The discharge-charge curves of NiO@NiCo₂O₄-based electrodes with a fixed capacity of 1000 mA h g^{-1} at a current density of 200 mA g^{-1} .

Fig. S6 XRD patterns of NiO@NiCo₂O₄-based electrodes at the pristine time, after discharge and after recharge process. (Current density: 200 mA g⁻¹)

Fig. S7 FESEM images of NiO@NiCo₂O₄ electrodes at (a) the 1st cycle discharged,
(b) the 1st cycle charged, (c) the 50th cycle discharged (d) the 50th cycle recharged € the 100th cycle discharged, (f) the 100th cycle recharged, (g) the 176th cycle discharged and (h) the 176th cycle recharged stages.

Fig. S8 Raman patterns of discharged/charged NiO@NiCo₂O₄ electrodes at the 1st cycle (a), at the 50th cycle (b), at the 100th cycle (c), at the 176th cycle (d).

Fig. S9 Nyquist plots of NiO@NiCo₂O₄ electrodes at fresh, 1st cycle discharged, 1sr cycle recharged, and 176th cycle recharged states.

Table S3 Comparison of the Li-O₂ battery performance of NiO@NiCo₂O₄ cathode with those of NiO-based and NiCo₂O₄-based cathodes reported in the literature.

Materials	Current	1st Discharge	Cycles/ Fixed	Ref.	
	Density	Capacity	Capacity		
NiO@NiCo2O4@Ni	200 mA g ⁻¹	8810.8 mA h g-	176/500 mA h g ⁻¹	This Work	

		1		
RuO ₂ /NiO	250 mA g ⁻¹	3240 mA h g ⁻¹	50/500 mA h g ⁻¹	1
Co ₃ O ₄ @NiCo ₂ O ₄	100 mA g ⁻¹	10645 mA h g ⁻¹	225/500 mA h g ⁻¹	2
NiCo ₂ O ₄ nanowire	18 mA g ⁻¹	980 mA h g ⁻¹	13/500 mA h g ⁻¹	3
Wave like NiCo ₂ O ₄	100mA g ⁻¹	4174 mA h g ⁻¹	100/500 mA h g ⁻¹	4
Au/NiCo ₂ O ₄	42.5 mA g ⁻¹	1275 mA h g ⁻¹	40/510 mA h g ⁻¹	5
NiCo ₂ O ₄ microspheres	0.08 mA cm ⁻²	3163 mA h g ⁻¹	60/500 mA h g ⁻¹	6
bowl-like NiCo ₂ O ₄	100 mA g ⁻¹	9624.2 mA h g ⁻	92/500 mA h g ⁻¹	7
CeO ₂ @NiCo ₂ O ₄	100 mA g ⁻¹	6500 mA h g ⁻¹	64/500 mA h g ⁻¹	8
NiCo ₂ O ₄ nanorods	0.1 mA cm ⁻²	1491.6 mA h g ⁻ 1	40/500 mA h g ⁻¹	9
NCO-500	100 mA g ⁻¹	9231 mA h g ⁻¹	80/600 mA h g ⁻¹	10

Reference

- S. Tong, M. Zheng, Y. Lu, Z. Lin, J. Li, X. Zhang, Y. Shi, P. He and H. Zhou, Journal of Materials Chemistry A, 2015, 3, 16177-16182.
- 2. X. Zhu, Y. Shang, Y. Lu, C. Liu, Z. Li and Q. Liu, *Journal of Power Sources*, 2020, 471.
- W. M. Liu, T. T. Gao, Y. Yang, Q. Sun and Z. W. Fu, *Physical Chemistry Chemical Physics*, 2013, 15, 15806-15810.
- 4. C. Shen, Z. Wen, F. Wang, K. Rui, Y. Lu and X. Wu, *Journal of Power Sources*, 2015, **294**, 593-601.
- 5. F. Tu, J. Xie, S. Zhang, G. Cao, T. Zhu and X. Zhao, *Journal of Materials Chemistry A*, 2015, **3**, 5714-5721.
- L. Wang, T. Zhu, Z. Lyu, J. Zhang, L. Gong, S. Xiao, J. Liu, W. Dong, X. Cui, G. W. Ho and W. Chen, *Rsc Advances*, 2016, 6, 98867-98873.
- J. Wang, R. Zhan, Y. Fu, H.-Y. Yu, C. Jiang, T.-H. Zhang, C. Zhang, J. Yao, J.-F. Li, X. Li, J.-H. Tian and R. Yang, *Materials Today Energy*, 2017, 5, 214-221.
- Z. D. Yang, Z. W. Chang, J. J. Xu, X. Y. Yang and X. B. Zhang, *Science China-Chemistry*, 2017, 60, 1540-1545.
- 9. S. G. Mohamed, Y. Q. Tsai, C. J. Chen, Y. T. Tsai, T. F. Hung, W. S. Chang and R. S. Liu, *Acs Applied Materials & Interfaces*, 2015, 7, 12038-12046.
- W. Zhao, X. Li, R. Yin, L. Qian, X. Huang, H. Liu, J. Zhang, J. Wang, T. Ding and Z. Guo, *Nanoscale*, 2019, **11**, 50-59.