Appendix A. Supplementary data

Nickle Oxide Regulating Surface Oxygen to Promote Formaldehyde

Oxidation on Manganese Oxide Catalyst

Hailin Zhao^{a,†}, Jie Tang^{b,†}, Zengyuan Li^a, Jie Yang^a, Hao Liu^a, Li Wang^{a,*}, Yao Cui^b, Wangcheng Zhan^a, Yanglong Guo^a, Yun Guo^{a,*}

a Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China b Technology Department, Shanghai HuaYi New Material Co., Ltd. 139 Pugong Road, Shanghai, 201507, P. R. China

[†] These two authors contributed equally to this paper.

^{*} Corresponding Author: <u>yunguo@ecust.edu.cn</u> (Y. Guo), <u>wangli@ecust.edu.cn</u> (L. Wang)

Fig. S1. Long-term stability of MnO_x at 130 °C for 24 h, 300 ppm HCHO + 2.5 vol.% H_2O + Air.

Fig. S2. FE-SEM images of MnO_x (a and b), 0.2NiO-MnO_x (c and d), and 0.4NiO-MnO_x (e and f) catalysts.

Fig. S3. Raman scattering spectra of (a) MnO_x , (b) 0.2NiO-MnO_x, and (c) 0.4NiO-MnO_x.

Fig. S4. XPS spectra of MnO_x and $NiO-MnO_x$ samples: (a) $Mn 2p_{3/2}$, (b) $Ni 2p_{3/2}$ and (c) O 1s.

Fig. S5. Mn 3s spectra of MnO_x , 0.2NiO-MnO_x, and (c) 0.4NiO-MnO_x.

Fig. S6. In situ spectra of formaldehyde oxidation in $20\% O_2/Ar$ with rising temperature over (a) MnO_x, (b) 0.2NiO-MnO_x, and (c) 0.4NiO-MnO_x after pre-adsorption.

Fig. S7. (a) XRD patterns of MnO_x calcinated at 350 and 400 °C; (b) formaldehyde oxidation activities of MnO_x -350, MnO_x -400, and 0.2NiO-MnO_x-400.

Since no diffraction peaks of MnO_x were observed in the XRD patterns of NiO-MnO_x, and amorphous MnO_x usually shows high activity, amorphous MnO_x was prepared and its activity was tested. MnO_x-350 catalyst was prepared by the similar method to MnO_x-400, the difference was the calcination temperature was 350 °C. XRD patterns in Fig. S6(a) showed that MnO_x-350 was mainly in the amorphous phase. T₅₀ and T₉₀ of MnO_x-350 were 112 and 127 °C, respectively, showing that formaldehyde oxidation activity of MnO_x-350 was a little higher than that of MnO_x-400 (T₅₀ = 118 °C, T₉₀ = 134 °C), but was far lower than that of 0.2NiO-MnO_x (T₅₀ = 80 °C, T₉₀ = 94 °C). Thus the difference in MnO_x crystallinity was not the key reason for the high activity of 0.2NiO-MnO_x.

Fig. S8. CO_2 -TPD profiles of as-prepared MnO_x , 0.2NiO-MnO_x, and 0.4NiO-MnO_x catalysts.

CO₂-TPD characterization for MnO_x, 0.2NiO-MnO_x, and 0.4NiO-MnO_x catalysts was carried out to research the surface basicity and CO2 adsorption/desorption property, and the spectra are given in Fig. S7. CO₂ desorption peaks located at low temperature region (below 150 °C), medium temperature region (150-350 °C), and high temperature region (above 350 °C) are generally attributed to CO₂ adsorbed at weak, medium, and strong basic sites [1, 2]. All of the three samples showed a desorption peak with almost the same intensity at low temperature region, showing that CO₂ could desorb from the catalyst surface efficiently, that is quite important because if CO₂ did not desorb from the catalyst surface timely, it would occupy the active sites and deactivate the catalyst. The amount of CO₂ desorbed from medium and strong basic sites over 0.4NiO-MnO_x decreased dramatically compared to the other two samples, indicating that overmuch NiO doped into MnO_x can reduce basic sites and basic sites might be mainly provided by Mn species. The temperature order of medium intensity basic sites was 0.2NiO- $MnO_x < 0.4NiO-MnO_x < MnO_x$, which is the same as the activity order, may suggesting the relatedness between medium basic sites and activity, the weaker the medium basic sites are, the more favorable it is for formaldehyde oxidation product CO₂ to desorb from the catalyst surface.

Sample -	Catalytic activity (°C)				
	T ₅₀	T ₉₀	LTCC		
MnO _x	118	134	139		
0.1NiO-MnO _x	98	109	117		
0.2NiO-MnO _x	80	94	98		
0.3NiO-MnO _x	100	113	123		
0.4NiO-MnO _x	107	125	133		
NiO	152	180	188		

Table S1. T_{50} , T_{90} and LTCC of MnO_x , NiO, and NiO-MnO_x catalysts with different Ni/(Ni + Mn) mole ratios for formaldehyde oxidation.

Cotalzata	НСНО	GHSV	Т	Activity	Daf	
Catalysis	concentration	concentration $(mL/g \cdot h)$ (°C)		Activity	Kel.	
pyrolusite			185			
cryptomelane	400 ppm	30000	140	η=100%	[3]	
todorokite			165			
K-OMS-2 (25 °C)	160 mm	30000	100	η=64%	[4]	
K-OMS-2 (100 °C)	400 ppm			η=10%		
birnessite MnO ₂			140	η=100%		
cryptomelane	100 mmm	50000	160	η=98%	[5]	
ramsdellite	100 ppm		160	η=97%		
MnOOH			160	η=96%		
birnessite MnO ₂	200	120000	100		[6]	
MnO_2	200 ppm		120	η=100%		
birnessite MnO _x (120 °C)	460	30000	100	η=100% η=50%	[7]	
birnessite MnO _x (80 °C)	400 ppm		100			
MnO_{x} -CeO ₂ (MP)	590	21000	100		[8]	
MnOx-CeO ₂ (SG)	580 ppm		180	1-100%		
$MnO_{x}-SnO_{2}$ (RP)	400	30000	180	m = 1000/	[9]	
$MnO_{x}-SnO_{2}(CP)$	400 ppm		220	IJ-10070		
birnessite MnO ₂	40 ppm	120000	110	η=100%	[10]	
20MnO _x /SBA-15	100 ppm	30000	160	n-00%	[11]	
20MnO _x /SBA-15	roo ppin		175	1-9070		
Graphene-MnO ₂	100 ppm	30000	65	η=100%	[12]	
MnO ₂ hollow sphere	100 ppm	30000	113	η=100%	[13]	
CoMn(3/1)-CP	<u>80 mmm</u>	60000	75	m = 1000/	[14]	
CoMn(3/1)-CP	80 ppm		100	1-100%		
$Co_{0.65}Mn_{2.35}O_4$	50	120000	100	n-100%	[15]	
$Co_{0.78}Mn_{2.22}O_4$	50 ppm		140	1-100%		
$Mn_{0.75}Fe_{3.30}/AC$	120 nnm	1500	240	η=90%	[16]	
$Mn_{0.15}Fe_{3.30}/AC$	120 ppm			η=90%		
Na ₁ /HMO	140 ppm	120000	120	η=100%	[17]	
НМО	140 ppm		140			
localized K ⁺ MnO ₂	200 mmm	120000	110	m = 1000/	[18]	
isolated K ⁺ MnO ₂	200 ppm		145	1-100%		
3D-MnO ₂ (dry air)	100 mmm	18000	120	η=100%	[19]	
MnO ₂ nanowire (dry air)	roo ppm		180			
MnO _x	300 ppm	40000	139	η=100%	This moul-	
0.2NiO-MnO _x	300 ppm	40000	98	η=100%	1 ms work	

Table S2. Formaldehyde oxidation activities over Mn-based catalysts in continuous flow test in recent years.

References

- [1] X. Tang, F. Gao, Y. Xiang, H. Yi, S. Zhao, X. Liu, Y. Li, Effect of potassiumprecursor promoters on catalytic oxidation activity of Mn-CoO_x catalysts for NO removal, Ind. Eng. Chem. Res., 54 (2015) 9116-9123.
- [2] Z. Shang, M. Sun, X. Che, W. Wang, L. Wang, X. Cao, W. Zhan, Y. Guo, Y. Guo, G. Lu, The existing states of potassium species in K-doped Co₃O₄ catalysts and their influence on the activities for NO and soot oxidation, Catal. Sci. Technol., 7 (2017) 4710-4719.
- [3] T. Chen, H. Dou, X. Li, X. Tang, J. Li, J. Hao, Tunnel structure effect of manganese oxides in complete oxidation of formaldehyde, Micropor. Mesopor. Mat., 122 (2009) 270-274.
- [4] H. Tian, J. He, X. Zhang, L. Zhou, D. Wang, Facile synthesis of porous manganese oxide K-OMS-2 materials and their catalytic activity for formaldehyde oxidation, Micropor. Mesopor. Mat., 138 (2011) 118-122.
- [5] L. Zhou, J. Zhang, J. He, Y. Hu, H. Tian, Control over the morphology and structure of manganese oxide by tuning reaction conditions and catalytic performance for formaldehyde oxidation, Mater. Res. Bull., 46 (2011) 1714-1722.
- [6] J. Wang, G. Zhang, P. Zhang, Layered birnessite-type MnO₂ with surface pits for enhanced catalytic formaldehyde oxidation activity, J. Mater. Chem. A, 5 (2017) 5719-5725.
- [7] H. Tian, J. He, L. Liu, D. Wang, Z. Hao, C. Ma, Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde, Micropor. Mesopor. Mat., 151 (2012) 397-402.
- [8] X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, MnO_x–CeO₂ mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature, Appl. Catal. B: Environ., 62 (2006) 265-273.
- [9] Y. Wen, X. Tang, J. Li, J. Hao, L. Wei, X. Tang, Impact of synthesis method on catalytic performance of MnO_x-SnO₂ for controlling formaldehyde emission, Catal. Commun., 10 (2009) 1157-1160.

- [10] J. Wang, J. Li, C. Jiang, P. Zhou, P. Zhang, J. Yu, The effect of manganese vacancy in birnessite-type MnO₂ on room-temperature oxidation of formaldehyde in air, Appl. Catal. B: Environ., 204 (2017) 147-155.
- [11] G. Rochard, C. Ciotonea, A. Ungureanu, J.-M. Giraudon, S. Royer, J.-F. Lamonier, MnOx loaded mesoporous silica for the catalytic oxidation of formaldehyde. Effect of the melt infiltration conditions on the activity-stability behavior, ChemCatChem, 12 (2020) 1664-1675.
- [12] L. Lu, H. Tian, J. He, Q. Yang, Graphene–MnO₂ hybrid nanostructure as a new catalyst for formaldehyde oxidation, J. Phys. Chem. C, 120 (2016) 23660-23668.
- [13] Y. Boyjoo, G. Rochard, J.-M. Giraudon, J. Liu, J.-F. Lamonier, Mesoporous MnO₂ hollow spheres for enhanced catalytic oxidation of formaldehyde, Sustain. Mater. Techno., 20 (2019) e00091.
- [14] C. Shi, Y. Wang, A. Zhu, B. Chen, C. Au, Mn_xCo_{3-x}O₄ solid solution as highefficient catalysts for low-temperature oxidation of formaldehyde, Catal. Commun., 28 (2012) 18-22.
- [15] Y. Huang, K. Ye, H. Li, W. Fan, F. Zhao, Y. Zhang, H. Ji, A highly durable catalyst based on Co_xMn_{3-x}O₄ nanosheets for low-temperature formaldehyde oxidation, Nano Res., 9 (2016) 3881-3892.
- [16] X. Du, C. Li, L. Zhao, J. Zhang, L. Gao, J. Sheng, Y. Yi, J. Chen, G. Zeng, Promotional removal of HCHO from simulated flue gas over Mn-Fe oxides modified activated coke, Appl. Catal. B: Environ., 232 (2018) 37-48.
- [17] Y. Chen, J. Gao, Z. Huang, M. Zhou, J. Chen, C. Li, Z. Ma, J. Chen, X. Tang, Sodium rivals silver as single-atom active centers for catalyzing abatement of formaldehyde, Environ. Sci. Technol., 51 (2017) 7084-7090.
- [18] J. Wang, J. Li, P. Zhang, G. Zhang, Understanding the "seesaw effect" of interlayered K⁺ with different structure in manganese oxides for the enhanced formaldehyde oxidation, Appl. Catal. B: Environ., 224 (2018) 863-870.
- [19] S. Rong, P. Zhang, Y. Yang, L. Zhu, J. Wang, F. Liu, MnO₂ framework for instantaneous mineralization of carcinogenic airborne formaldehyde at room

temperature, ACS Catal., 7 (2017) 1057-1067.