Supporting Information

Aerobic Oxidation of Primary Amines to Amides Catalyzed by an

Annulated Mesoionic Carbene (MIC) Stabilized Ru Complex

Suman Yadav, Noor U Din Reshi, Saikat Pal and Jitendra K. Bera*

Department of Chemistry and Center for Environmental Sciences and Engineering,

Indian Institute of Technology Kanpur, Kanpur 208016, India

Fax: +91-512-2597436, Tel: + 91-512-2597336

E-mail: jbera@iitk.ac.in

* To whom correspondence should be addressed.

(61 pages including the cover page)

Contents

P	age No.
1 Experimental Section	S3
1.1. General procedures	S3
1.2. Materials	S3
2 Catalysis Reaction	S3
2.1 General procedure for oxidation of primary amines to amides	S3
3 Kinetic Study	S5
3.1 General procedure for reaction profile	S5
3.2 General procedure for kinetic studies	S5
4 NMR Spectra	S15
5 Computational Details	S45
Table S5. Cartesian coordinates of computed structures	S48
6 References	S60

1. Experimental Section

1.1 General procedures

The metal complexes were synthesized under an atmosphere of purified nitrogen using standard Schlenk-vessel and vacuum-line techniques. Unless otherwise stated, all catalytic reactions were carried out in air in reaction tubes. NMR spectra were obtained on JEOL JNM–LA 400 MHz and 500 MHz spectrometers. ¹H NMR chemical shifts were referenced to the residual hydrogen signal of the deuterated solvents. The chemical shifts are given as dimensionless δ values and is frequency referenced relative to TMS for ¹H and ¹³C NMR. Infrared spectra were recorded in the range 4000–400 cm⁻¹ on a Vertex 70 Bruker spectrophotometer on KBr pellets. ESI–MS were recorded on a Waters Micromass Quattro Micro triple–quadrupole mass spectrometer. The GC-MS experiments were performed using an Agilent 7890 A GC and 5975C MS system.

1.2 Materials

All solvents for catalysis reaction were purchased from Merck, India and were used as received without using any drying agents. RuCl₃.*x*H₂O was purchased from Arora Matthey, India. Lithium bis(trimethylsilyl)amide (LiHMDS), PhCD₂NH₂, and organic substrates were purchased from Sigma-Aldrich. Ligand [L¹H]Br,¹ [Ru(COD)Cl₂]_n,² catalyst **1**,¹ [Ru^{II}(IMeNHC)(η^6 -p-cymene)(Cl)₂],³ and [Ru^{II}(py-NHC)(CO)₂(Br)₂]⁴ were prepared according to the literature procedures.

2. Catalysis reaction

2.1 General procedure for the oxidation of primary amine to amide

Amine (0.5 mmol) and KO^tBu 30 mol% were sequentially added to a solution of catalyst **1** (1 mol%) in 2 mL ^tBuOH. The mixture was stirred at 70 °C for 24 h in air. After completion of the reaction, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography using silica (hexane/EtOAc) to afford the amide. The isolated products were characterized by NMR spectroscopy. Yields were calculated by GCMS using mesitylene as an internal standard.

٦	Table S1. Reaction optimization. ^a									
	$NH_2 \xrightarrow{\text{Cat. (1 mol%)}}_{\text{base (0.3 eq.)}} NH_2 + A \xrightarrow{\text{Cat. (1 mol%)}}_{a} NH_2 + A \xrightarrow{\text{Cat. (1 mol%)}}_{b} C \xrightarrow{\text{Cat. (1 mol%)}}_{c} NH_2 + A \text{Cat. (1 mol%)$									
	Entry	Solvent	Temp	Base	onversion (%)ª	(a)	(b)	(c)		
	1 ^{<i>b</i>}	^t BuOH	80 °C	KO ^t Bu(0.5 eq)	100	98	2	0		
	2	^t BuOH	70 °C	KOʻBu(0.3 eq)	100	98	2	0		
	3°	^t BuOH	70 °C	KO ^t Bu	60	98	2	0		
	4	^t BuOH	70 °C	KO ^t Bu (0.2 eq)	90	86	13	1		
	5	^t BuOH	60 °C	KO ^t Bu	75	85	15	0		
	6 ^{<i>d</i>}	^t BuOH	70 °C	KO ^t Bu	<1	0	0	100		
	7	^t BuOH	70 °C	NaO ^t Bu	100	48	0	52		
	8	^t BuOH	70 °C	Na ₂ CO ₃	44	0	20	80		
	9	^t BuOH	70 °C	K ₂ CO ₃	8	0	21	79		
	10	^t BuOH	70 °C	Cs_2CO_3	78	72	0	28		
	11	^t BuOH	70 °C	Et ₃ N	45	0	18	82		
	12	^t BuOH	70 °C	KOH	80	90	2	8		
	13	^t BuOH	70 °C	NaOH	73	57	3	40		
	14	EtOH	70 °C	KO ^t Bu	63	53	35	12		
	15	ⁱ PrOH	70 °C	KO ^t Bu	48	84	4	12		
	16	MeOH	70 °C	KO ^t Bu	50	24	6	70		
	17	Toluene	70 °C	KO ^t Bu	65	0	85	15		
	18	<i>p</i> -Xylene	70 °C	KO ^t Bu	55	0	72	28		
	19	DMF	70 °C	KO ^t Bu	55	0	45	55		
	20	DMSO	70 °C	KO ^t Bu	39	100	0	0		
	21	Dioxane	70 °C	KO ^t Bu	30	0	44	56		
	22	THF	70 °C	KO ^t Bu	35	0	44	56		
	23	CH₃CN	70 °C	KO ^t Bu	5	0	39	61		
	24	EtOAc	70 °C	KO ^t Bu	28	2	38	60		
	25	DCE	70 °C	KO ^t Bu	2	0	100	0		

^aReaction conditions: Catalyst (1 mol%), benzylamine (0.5 mmol) and KO^tBu (0.15 mmol) unless otherwise mentioned. Conversions are determined by GC–MS using mesitylene as an internal standard. ^bCatalyst (2 mol%). ^cCatalyst (0.5 mol%). ^aReaction performed under nitrogen atmosphere.

Table S2. Catalyst Screening. ^a									
Ĺ	$NH_{2} \xrightarrow{\text{Cat. (1 mol%)}}_{\substack{\text{base (0.3 eq.)} \\ 1^{\text{BuOH, air, 70 °C}}} NH_{2 +} \xrightarrow{\text{NH}_{2 +}}_{p = N} + \xrightarrow{\text{NH}_{2 +}}_{p = N} N$								
	Conversion								
Entry	Catalyst	(%)	(a)	(b)	(c)				
1	RuH(CO)Cl(PPh ₃) ₃	68	40	2	58				
2	[Ru(COD)Cl ₂]n	70	34	2	64				
3	$Ru(PPh_3)_3Cl_2$	80	40	3	57				
4	RuCl ₃ . <i>x</i> H ₂ O	72	58	0	42				
5		75	40	2	58				
6	Br Ru N Br CO	79	55	2	43				
^a Reaction conditions: ^a Reaction conditions: Catalyst (1 mol%),									

benzylamine (0.5 mmol) and KO^tBu (0.15 mmol). Conversions are determined by GC–MS using mesitylene as an internal standard.

3. Kinetic studies

3.1 General procedure for reaction profile

An oven dried Schlenk tube was charged with benzylamine (0.5 mmol), ^tBuOK (0.15 mmol), catalyst (0.005 mmol), mesitylene (0.25 mmol) and 2 mL ^tBuOH. The tube was placed in a pre-heated oil bath at 70 °C with stirring under air. Small aliquots (200 μ L) were taken out after stipulated time intervals and passed through a bed of silica with MeOH as eluent. These samples were then analyzed by GC–MS and the decay of benzylamine was measured relative to mesitylene as an internal standard. Data were averaged from three reactions.

3.2. General procedures for the kinetic studies

[Benzylamine]

A set of five different oven dried Schlenk tubes containing variable benzylamine amounts were prepared using the following procedure. 0.1066 mmol, 0.2132 mmol, 0.4265 mmol, 0.6397 mmol and 0.8531 mmol of amine were added along with half-

molar mesitylene in different reaction vessels. To each tube, measured amount of **1** (0.0043 mmol), KO^tBu (0.1278 mmol) and 2 mL ^tBuOH were added. All tubes were placed on preheated (70 °C) oil–baths with stirring UNDER air. After stipulated time intervals, aliquots of 200 μ L were taken out and passed through a bed of silica with MeOH as eluent. These samples were then analyzed by GC–MS and the decay of amine was measured relative to the internal standard (mesitylene).

mmol of benzylamine	slope
0.1066	8.1428 X 10 ⁻⁴
0.2132	0.00154
0.4265	0.00269
0.6397	0.00415
0.8531	0.00585

Figure S1. Concentration [Product] vs time plot at different [benzylamine] concentration.

Figure S2. $ln[k_{obs}]$ vs ln[substrate].

[Catalyst]

A set of five different oven dried Schlenk tubes containing variable catalyst amounts were prepared using the following procedure. 1.07 X 10^{-3} mmol, 2.13 X 10^{-3} mmol, 4.26 X 10^{-3} mmol, 8.53 X 10^{-3} mmol and 1.28 X 10^{-2} mmol of catalyst were added and to each tube, measured amount of benzylamine (0.4265 mmol), mesitylene (0.2132 mmol), KO^tBu (0.1278 mmol) and 2 mL ^tBuOH were added. All tubes were placed on preheated (70 °C) oil–baths with stirring in air. After stipulated time intervals, aliquots of 200 µL were taken out and passed through a bed of silica with MeOH as eluent. These samples were then analyzed by GC–MS and the decay of amine was measured relative to the internal standard (mesitylene).

mmol of catalyst	slope
1.07 X 10 ⁻³	5.1190 X 10 ⁻⁴
2.13 X 10 ⁻³	9.5476 X 10 ⁻⁴
4.26 X 10 ⁻³	0.00269
8.53 X 10 ⁻³	0.00367
1.28 X 10 ⁻²	0.00566

Figure S3. Concentration [Product] vs time plot at different [catalyst] concentration.

Figure S4. $\ln[k_{obs}]$ vs $\ln[catalyst]$.

[KO^tBu]

A set of three different oven dried Schlenk tubes containing variable KO^tBu concentrations were prepared using the following procedure. 0.1280 mmol, 0.1706 mmol and 0.2133 mmol of KO^tBu were added and to each tube, measured amount of benzylamine (0.4265 mmol), mesitylene (0.2132 mmol), **1** (0.0043 mmol) and 2 mL ^tBuOH were added. All tubes were placed on preheated (70 °C) oil–baths with stirring in air. After stipulated time intervals, aliquots of 200 μ L were taken out and passed through a bed of silica with MeOH as eluent. These samples were then analyzed by GC–MS and the decay of amine was measured relative to the internal standard (mesitylene).

mmol of KO ^t Bu	slope
0.1280	0.00244
0.1706	0.00255
0.2133	0.00262

Figure S5. Concentration [Product] vs time plot at different [KO^tBu] concentration.

Figure S6. ln[k_{obs}] vs ln[base].

Temperature–Dependent Kinetic Study

An oven dried Schlenk tube was charged with benzylamine (0.4265 mmol), **1** (0.0043 mmol), KO^tBu (0.1278 mmol) and mesitylene (0.25 mmol) in 2 mL ^tBuOH. The tube was placed in a pre-heated oil bath at desired temperature (50°C, 55 °C, 60 °C, 65 °C, 70 °C, 75°C) with stirring under air. Small aliquots of 200 μL were taken

out after stipulated time intervals and passed through a bed of silica with MeOH as an eluent. These samples were then analyzed by GC–MS and the decay of amine was measured relative to the internal standard (mesitylene). The activation parameters were determined from the ln(k/T) versus 1/T plot which is linear over the temperature range studied (323–348K).

Temperature dependent kinetic study data							
Temp. (K) Slope In(k/T) 1/T x 10 ⁻¹							
323	9.888 X 10 ⁻⁴	-12.697	3.09				
328	0.00132	-12.423	3.04				
333	0.00194	-12.053	3				
338	0.00269	-11.741	2.95				
343	0.00369	-11.439	2.91				
348	0.0063	-10.919	2.87				

Figure S7. Concentration [Product] vs time plot at different temperature with catalyst **1**.

Figure S8. Plot of $\ln(k/T)$ vs 1/T for benzylamine oxygenation with catalyst **1**.

Activation enthalpy (Δ H[‡]) and activation entropy (Δ S[‡]) values were obtained from the slope and intercept of plots of ln(*k*2/*T*) vs 1/*T* using the following equation:

$\ln(k/T) = \ln(R/Nh) + \Delta S^{\ddagger}/R - \Delta H^{\ddagger}/RT$

where N = Avogadro's number, R = universal gas constant, and h = Planck's constant.

Hammett Studies

An oven dried Schlenk tube was charged with appropriate benzylamine derivatives (0.4265 mmol), **1** (0.0043 mmol), KO^tBu (0.1278 mmol) and mesitylene (0.2132 mmol) in 2 mL ^tBuOH. All tubes were placed on preheated (70 °C) oil–baths with stirring under air. Aliquots of 200 µL were taken out after stipulated time intervals and passed through a bed of silica with MeOH as an eluent. These samples were then analyzed by GC–MS and the decay of amine was measured relative to the internal standard (mesitylene). Reactivity towards oxygenation reaction follows the sequence p–Cl >p–F >p–H >p–Me >p–OMe.

Figure S9. Kinetic data for the oxygenation of benzylamine and its *para*-substituted derivatives.

Hammett plot kinetic study data									
SubstrateSlope $[log(k_x/k_H)]$ σ_p									
<i>p</i> –Cl	0.00694	0.409	0.227						
<i>p</i> –F	0.00481	0.252	0.062						
<i>p</i> –H	0.00269	0	0						
<i>p</i> –Me	0.00094	-0.455	-0.17						
<i>p</i> -OMe 0.0006 -0.651 -0.268									
ρ = 2.28									

Figure S10. Hammett plot for the oxygenation of amines.

Experimental Procedure for determining KIE

Parallel reactions were carried out for the oxygenation of benzylamine with deuterated and non-deuterated substrates under similar conditions. Oven dried Schlenk tube was charged with PhCH₂NH₂ (0.4265 mmol), **1** (0.0043 mmol), KO^{*t*}Bu (0.1278 mmol) and mesitylene (0.2132 mmol) in 2 mL ^{*t*}BuOH. Similarly, other Schlenk tube was charged with PhCD₂NH₂ (0.4265 mmol), **1** (0.0043 mmol), KO^{*t*}Bu (0.1278 mmol) and mesitylene (0.2132 mmol) in 2 mL ^{*t*}BuOH. Similarly, other Schlenk tube was charged with PhCD₂NH₂ (0.4265 mmol), **1** (0.0043 mmol), KO^{*t*}Bu (0.1278 mmol) and mesitylene (0.2132 mmol) in 2 mL ^{*t*}BuOH. Both tubes were placed on pre-heated (70 °C) oil–baths with stirring in air. After stipulated time intervals, aliquots of 200 µL were taken out and passed through a bed of silica with MeOH as an eluent. These samples were then analysed by GC–MS and the decay

of amine was measured relative to the internal standard (mesitylene). The following plot was used to analysis the KIE value for deuterated and non-deuterated benzylamines. For $PhCH_2NH_2/PhCD_2NH_2$, the KIE value is found to be 2.9.

Figure S11. Concentration [Product] vs time plot for $PhCH_2NH_2$ and $PhCD_2NH_2$ with catalyst 1.

Figure S12. ESI-MS, m/z: 573.9969 (z = 1) of $[Ru(L^1)Br(O)(CH_3CN)]^+$. Oxygen was passed using a balloon in CH₃CN solution of catalyst **1** at room temperature. ESI-MS spectrum was recorded after 30 min.

Figure S13. IR spectrum of $[Ru(L^1)Br(O)(CH_3CN)]^+$. Oxygen was passed through a solution of catalyst **1** in CH₃CN at room temperature. IR spectrum was recorded after 30 min. Stretching frequency at 808 cm⁻¹ is generated because of the Ru oxo species.

Figure S14. ESI-MS of $[Ru(L^1)Br(CH_3CN)_2]^+$.

4. NMR Spectra

170 160 150 140 130 120

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20

5. Computational Details

Density functional theory (DFT) calculations were performed using Gaussian 09 program suite.⁵ The oxidation of bezyl amine at 70 °C in 'BuOH was used as a model reaction. The density functional used here is M06 hybrid meta-GGA functional.⁶ LanL2DZ basis set with effective core potentials⁷ was employed for ruthenium and 6-31+G(d,p) basis set was used for other elements.^{8,9} Normal mode analysis was performed to ascertain the nature of the stationary state points on the potential energy surface. All stationary points on the potential energy surface were characterized to be either local minima with no imaginary vibrational frequency or transition states with a single imaginary frequency. Solvent effects were introduced by performing single point calculation for the gas phase optimized geometries using SMD implicit solvent model with 'BuOH as the solvent. The Gibbs free energies were then computed at 343.15 K and the computed free energy values include both zeropoint correction and thermal correction to enthalpy and entropy to the total electronic energy.

Figure S15. Optimized structures with important distances (in Å.) labeled. For clarity, the phenyl and benzyl groups are not shown in the picture. Hydrogen atoms except

for those involved in the reaction are also omitted. Atom color codes: Ru (pink), C (grey), N (blue), O (red), H (sky blue) and Br (green).

Figure S16. The unique imaginary mode for the transition states.

Table S3. Values of the unique imaginary frequencies (in cm⁻¹) in ^tBuOH for the transition states.

	Frequency (cm ⁻¹)				
TSBC	-1250.0				
TSEF	-1565.5				

Table S4. Free energies (au) in ^tBuOH for all the chemical species.

	G(au)
1	-6598.110435
Α	-6688.141807
В	-6688.15782
TSBC	-6688.144599
С	-6688.215018
D	-6686.949709
E	-6686.979191
TSEF	-6686.948235
F	-6687.02053
H ₂ O	-76.410056
PhCH ₂ NH ₂	-326.58478
COD	-311.665014
O ₂	-150.277613
PhCN	-324.210365

 Table S5. Optimized cartesian coordinates of the computed structures

1						Α	
Ru	-2.20379	-0.15984	0.195803	Ru	1.834138	-0.93913	-0.48383
Br	-1.00776	-0.9397	-2.01442	Br	0.052315	-2.69071	-1.08309
Br	-4.14641	0.775049	-1.35251	Br	3.529824	-2.57057	0.443753
N	0.521102	0.638583	0.65333	N	-0.60968	0.258436	0.63608
C	1.850297	0.392349	0.844148	C	-1.80841	0.877587	0.427347
N	1.924473	-0.9029	1.213551	N	-1.74294	1.377347	-0.82664

C	0.632058	-1.43397	1.219934	С	-0.50418	1.034593	-1.37358
Н	0.497523	-2.48652	1.431974	Н	-0.27898	1.263764	-2.4069
C	-0.28569	-0.48748	0.846736	С	0.225009	0.314276	-0.46813
C	2.810623	1.413476	0.579852	С	-2.82365	0.806818	1.426853
C	3.113137	-1.75355	1.175243	С	-2.87852	1.763363	-1.66509
Н	2.790189	-2.72807	1.562683	Н	-2.44279	2.111254	-2.60999
Н	3.873792	-1.37144	1.864923	Н	-3.40308	2.615817	-1.2199
С	5.032463	-2.12335	-0.39477	N	0.847982	-1.15148	1.68011
Н	5.684439	-2.19135	0.476793	С	-2.55503	0.031254	2.529368
С	3.670168	-1.87689	-0.22172	Н	-3.31462	-0.04756	3.306293
С	2.842015	-1.75674	-1.3404	С	-1.3229	-0.67375	2.704227
Н	1.770163	-1.56986	-1.23755	С	1.109234	-1.9845	2.689556
С	5.565989	-2.24555	-1.67452	Н	2.057437	-2.51626	2.62265
Н	6.63101	-2.42905	-1.80044	С	-0.33631	-0.53447	1.720404
N	-1.27873	1.824022	-0.1121	С	0.220186	-2.18204	3.755104
С	2.331792	2.604299	0.09047	Н	0.496673	-2.86734	4.55068
Н	3.041452	3.403961	-0.11801	С	-0.99948	-1.53233	3.770741
С	0.942539	2.839089	-0.1539	Н	-1.71375	-1.68828	4.576611
С	5.15025	1.331842	-0.26787	Н	4.090561	0.209319	-0.79898
Н	4.756098	1.489042	-1.27134	С	3.091069	1.947059	-0.35233
С	4.260843	1.222224	0.804783	Н	2.355988	2.2607	0.399999
C	-3.6629	0.455403	1.714647	Н	2.603608	1.995116	-1.33403
Н	-3.90703	1.493748	1.485374	0	2.243729	-0.61774	-2.1611
C	-1.77944	2.946918	-0.63027	С	-3.82663	0.610367	-1.88572
Н	-2.84534	2.919366	-0.85755	С	-3.3722	-0.71075	-1.88135
C	-2.44439	-2.33073	2.439658	С	-5.17985	0.874621	-2.09813
Н	-1.74541	-3.10801	2.776861	С	-4.27185	-1.75486	-2.07685

н	-3.44086	-2.69738	2.724549	н	-2.31764	-0.95011	-1.72458
С	-4.8487	-0.48649	1.819296	C	-6.07571	-0.17056	-2.30344
н	-5.76679	0.104276	1.72355	н	-5.53842	1.904267	-2.07227
н	-4.86535	-0.91521	2.8333	C	-5.6233	-1.48851	-2.28799
С	-2.437	0.213123	2.353325	н	-3.90293	-2.77818	-2.06483
н	-1.82776	1.0872	2.603375	н	-7.13029	0.044551	-2.46276
С	-3.51608	-1.90084	0.15784	н	-6.32381	-2.30651	-2.44034
Н	-3.52231	-2.21888	-0.88631	C	-4.11385	1.517933	1.297559
С	4.761391	0.976418	2.087893	C	-4.15224	2.911078	1.173394
Н	4.071315	0.913112	2.929615	C	-5.31285	0.800955	1.338301
С	-2.38425	-2.21744	0.923129	С	-5.37197	3.575493	1.088102
Н	-1.60476	-2.78754	0.413719	н	-3.21928	3.475079	1.162204
С	0.039431	1.807119	0.127195	С	-6.53183	1.4666	1.2554
С	-2.1379	-1.0178	3.175389	н	-5.27981	-0.28669	1.391436
н	-2.69359	-0.97194	4.12683	С	-6.56381	2.853262	1.129129
Н	-1.07487	-0.99329	3.447544	н	-5.39295	4.659229	1.000058
С	-0.97947	4.065026	-0.90712	н	-7.45848	0.897614	1.273518
н	-1.44545	4.952629	-1.32421	н	-7.51703	3.372504	1.062303
С	0.382055	4.015844	-0.6836	C	4.308218	2.82691	-0.31365
н	1.024454	4.861645	-0.92042	C	5.154225	2.897699	-1.4245
С	4.74037	-2.11645	-2.79009	C	4.63792	3.548276	0.835137
н	5.158507	-2.2062	-3.79022	С	6.307897	3.673848	-1.38594
С	3.379199	-1.87288	-2.61925	н	4.89803	2.337728	-2.32508
Н	2.720372	-1.77325	-3.4791	C	5.791112	4.32851	0.87667
С	-4.86721	-1.60605	0.761763	н	3.980337	3.500927	1.70364
Н	-5.28157	-2.53327	1.193092	C	6.628349	4.39127	-0.23419
Н	-5.53592	-1.31358	-0.05267	н	6.957499	3.722399	-2.25697

C	6.519318	1.193877	-0.06132	н	6.035878	4.889078	1.776255			
Н	7.201533	1.267204	-0.905	н	7.528761	5.000647	-0.20495			
С	6.130475	0.836028	2.29268	N	3.403122	0.527778	-0.11189			
Н	6.512147	0.654187	3.294757	н	3.820941	0.384605	0.807717			
С	7.011471	0.944804	1.217423							
н	8.081548	0.836325	1.378075							
В					C					
Ru	1.900065	-0.91423	-0.49764	Ru	1.750272	-1.0042	-0.32116			
Br	0.184312	-2.88652	-0.24022	Br	0.1226	-3.02205	-0.1911			
Br	3.916592	-2.34531	0.368247	Br	3.92344	-2.3532	0.451995			
N	-0.50793	0.38882	0.30718	N	-0.57579	0.456887	0.257022			
С	-1.75867	0.889264	0.090723	C	-1.82203	0.938441	-0.00157			
N	-1.85862	1.042767	-1.24602	N	-1.95135	0.863194	-1.34495			
C	-0.66307	0.609897	-1.83125	C	-0.77811	0.310377	-1.878			
Н	-0.57574	0.619607	-2.90987	н	-0.72178	0.12092	-2.9417			
С	0.218103	0.168441	-0.87906	C	0.125422	0.012918	-0.88012			
С	-2.66394	1.057004	1.183328	C	-2.66796	1.297355	1.089824			
С	-3.09442	1.177555	-2.01566	C	-3.20258	0.910481	-2.09521			
Н	-2.78178	1.277021	-3.06254	н	-2.91966	0.832012	-3.15243			
Н	-3.60765	2.107173	-1.74459	н	-3.68396	1.886694	-1.96409			
N	1.105147	-0.66515	1.550272	N	1.110381	-0.38906	1.520776			
С	-2.23695	0.627808	2.416501	C	-2.17141	1.09661	2.359321			
Н	-2.90865	0.738138	3.266798	н	-2.79921	1.364919	3.20811			
C	-0.95108	0.040866	2.628091	C	-0.87313	0.547312	2.615539			
C	1.539224	-1.18078	2.695499	C	1.622162	-0.67471	2.727339			
н	2.49975	-1.69761	2.634407	н	2.577013	-1.1977	2.715887			
C	-0.08917	-0.06635	1.531941	C	-0.09096	0.220619	1.505726			

C	0.77834	-1.09048	3.870301	C	0.945786	-0.34668	3.90789
Н	1.166726	-1.52081	4.788116	н	1.407774	-0.59888	4.857735
С	-0.46532	-0.48835	3.838865	С	-0.3013	0.256106	3.868466
Н	-1.08371	-0.43635	4.732957	н	-0.84485	0.485362	4.782404
N	3.000657	0.540015	-0.07545	N	3.099259	0.504743	-0.5039
Н	3.911993	0.264594	0.309948	н	4.050405	0.131681	-0.40389
0	2.264749	-1.39444	-2.29554	С	3.013375	1.779721	-0.6472
Н	1.606088	-1.01937	-2.8966	н	2.007181	2.196076	-0.7678
С	-4.0106	-0.00624	-1.82543	н	1.628494	-2.61612	-2.27823
С	-3.51327	-1.27185	-1.5046	С	-4.14635	-0.19799	-1.69845
С	-5.38563	0.176893	-1.97245	С	-3.67399	-1.41111	-1.19162
С	-4.39024	-2.33815	-1.32322	С	-5.51931	-0.00355	-1.85197
Н	-2.44196	-1.44652	-1.38532	C	-4.57293	-2.41315	-0.83625
С	-6.25955	-0.89231	-1.80132	н	-2.60401	-1.59344	-1.06893
Н	-5.77605	1.171556	-2.19048	C	-6.41569	-1.00916	-1.5031
C	-5.76319	-2.15198	-1.47139	н	-5.891	0.951159	-2.22579
Н	-3.98774	-3.31526	-1.06561	C	-5.94385	-2.21554	-0.98973
Н	-7.33087	-0.73821	-1.91125	н	-4.18964	-3.35125	-0.44077
н	-6.44579	-2.98645	-1.32826	н	-7.48486	-0.84447	-1.61933
С	-4.01043	1.648271	1.021101	н	-6.64304	-3.00043	-0.71019
С	-4.16834	2.955252	0.547219	C	-4.02845	1.845305	0.894476
С	-5.13972	0.914077	1.39527	C	-4.22916	3.045501	0.204854
С	-5.43799	3.51475	0.442079	C	-5.12962	1.179003	1.440846
н	-3.28776	3.539216	0.278014	C	-5.51172	3.564993	0.05561
С	-6.40806	1.47586	1.292233	н	-3.36985	3.581903	-0.19825
н	-5.01758	-0.11573	1.729632	C	-6.41095	1.699989	1.292448
C	-6.55968	2.775245	0.814262	н	-4.97644	0.229228	1.951727

Н	-5.55157	4.533706	0.079282	C	-6.60511	2.891379	0.598005	
н	-7.28096	0.891281	1.573309	н	-5.65667	4.503805	-0.4742	
Н	-7.55139	3.213785	0.731825	н	-7.26124	1.165944	1.710262	
C	3.821623	2.838302	-0.24788	н	-7.60692	3.298154	0.481172	
С	4.571469	2.583379	-1.40007	С	4.124551	2.726459	-0.67476	
С	4.128481	3.956355	0.529049	С	5.444903	2.358906	-0.37246	
С	5.607051	3.437932	-1.76625	С	3.855881	4.058579	-1.01764	
Н	4.344022	1.702949	-2.00009	С	6.462978	3.300469	-0.42561	
С	5.159164	4.816363	0.158684	н	5.680455	1.336006	-0.08094	
н	3.557029	4.152447	1.436462	С	4.877211	4.999761	-1.0724	
С	5.902069	4.557468	-0.99042	н	2.831494	4.348409	-1.24954	
н	6.189432	3.225134	-2.65999	С	6.184966	4.622372	-0.77722	
н	5.389723	5.683488	0.773873	н	7.481626	3.004703	-0.1861	
Н	6.714052	5.22188	-1.2773	н	4.653008	6.028516	-1.34473	
C	2.679665	1.931627	0.136963	н	6.987	5.355635	-0.81691	
н	2.423788	2.111007	1.198592	0	2.306931	-1.91641	-2.27609	
н	1.784001	2.176892	-0.45239	н	3.116449	-2.36383	-1.96018	
		D	1	E				
Ru	1.850264	-0.87435	-0.54103	Ru	1.860702	-1.15817	-0.6899	
Br	0.095459	-2.66688	-1.19151	Br	0.696553	-2.55298	1.165273	
Br	3.59728	-2.47469	0.344232	Br	4.222272	-1.85453	0.223961	
N	-0.60878	0.23497	0.641724	N	-0.51593	0.382654	-0.33282	
С	-1.80994	0.857756	0.46663	С	-1.83817	0.65101	-0.53866	
N	-1.75644	1.408583	-0.76664	N	-2.19988	-0.12602	-1.58318	
C	-0.51977	1.092513	-1.33578	C	-1.0934	-0.88235	-1.98395	
н	-0.30294	1.356008	-2.36268	н	-1.19073	-1.61525	-2.77352	
C	0.215552	0.338787	-0.46558	C	-0.01211	-0.58762	-1.20292	
	1		i		1	1	1	

C	-2.81949	0.743431	1.468685	C	-2.53274	1.524923	0.353553
C	-2.90208	1.808795	-1.58501	C	-3.56159	-0.44537	-2.00487
н	-2.47626	2.180852	-2.52523	н	-3.45432	-1.0715	-2.89914
Н	-3.42737	2.647869	-1.11586	н	-4.0833	0.468396	-2.3123
N	0.859716	-1.21048	1.622359	N	1.421556	0.339525	0.888056
С	-2.54351	-0.07945	2.533947	C	-1.83505	1.982856	1.445464
Н	-3.29774	-0.19312	3.311822	н	-2.34459	2.639558	2.149326
С	-1.30867	-0.78749	2.670881	С	-0.47354	1.62758	1.701141
С	1.127446	-2.08605	2.590568	C	2.094604	0.629779	1.996437
Н	2.078579	-2.60798	2.498074	н	3.069441	0.1503	2.09197
C	-0.32619	-0.60174	1.691154	C	0.181117	0.821493	0.763618
C	0.242401	-2.33576	3.64958	C	1.555648	1.459817	2.988242
Н	0.52409	-3.05475	4.412869	н	2.145835	1.681421	3.872028
С	-0.97844	-1.69134	3.697554	С	0.27847	1.966843	2.8412
Н	-1.68932	-1.88429	4.49848	н	-0.16415	2.598845	3.608614
N	3.239441	0.580923	-0.04703	N	2.701656	0.150936	-1.6291
Н	3.954161	0.285777	0.621335	0	1.779879	-2.6443	-1.88042
C	3.409623	1.718326	-0.61164	н	2.535501	-3.21482	-1.66207
Н	2.663426	2.007052	-1.35791	C	-4.34553	-1.15733	-0.93099
С	-3.84573	0.65632	-1.82527	С	-3.71721	-1.92914	0.049036
С	-3.3822	-0.66094	-1.87215	С	-5.73606	-1.04388	-0.93261
C	-5.2043	0.91754	-2.00367	C	-4.47948	-2.57094	1.021938
C	-4.27859	-1.70466	-2.08441	н	-2.63151	-2.03904	0.066333
Н	-2.32309	-0.89739	-1.74364	C	-6.49618	-1.69264	0.034914
C	-6.097	-0.12667	-2.22691	н	-6.2237	-0.41994	-1.68226
Н	-5.56891	1.943195	-1.93632	С	-5.86773	-2.45457	1.018188
C	-5.63563	-1.441	-2.26208	н	-3.97956	-3.16623	1.782253

Н	-3.90264	-2.72507	-2.11216	Н	-7.57937	-1.5926	0.028651		
Н	-7.15579	0.085841	-2.35961	н	-6.4588	-2.95762	1.779993		
н	-6.33336	-2.2588	-2.42772	C	-3.94482	1.913917	0.148671		
C	-4.10857	1.461952	1.379135	C	-4.88997	1.644894	1.143233		
С	-4.14276	2.858433	1.298791	С	-4.34232	2.593256	-1.00801		
С	-5.31032	0.749167	1.416573	С	-6.21321	2.041267	0.980297		
C	-5.3605	3.530291	1.253625	н	-4.58791	1.087407	2.029134		
Н	-3.20754	3.418686	1.29057	C	-5.66666	2.988984	-1.16954		
C	-6.52734	1.422224	1.374659	Н	-3.60231	2.830009	-1.77285		
Н	-5.2818	-0.33976	1.434361	C	-6.60439	2.712211	-0.17573		
C	-6.55494	2.812279	1.29202	н	-6.94327	1.813778	1.753508		
Н	-5.37772	4.616288	1.199176	Н	-5.96454	3.525752	-2.06734		
Н	-7.45626	0.856879	1.390615	н	-7.63903	3.021799	-0.30303		
Н	-7.50655	3.337574	1.257293	C	3.778141	2.287679	-1.14489		
C	4.498601	2.661944	-0.3641	C	3.731861	3.609963	-1.59735		
C	5.593971	2.35596	0.455872	C	4.32228	2.002575	0.111762		
C	4.440418	3.91992	-0.97667	C	4.180208	4.644721	-0.78208		
C	6.596124	3.29299	0.664145	н	3.333717	3.824706	-2.5887		
Н	5.677128	1.375132	0.921494	C	4.776106	3.039574	0.919341		
C	5.443531	4.859285	-0.76598	Н	4.423154	0.958899	0.41296		
Н	3.596087	4.154428	-1.62358	C	4.696493	4.361311	0.481219		
C	6.522155	4.547998	0.057815	Н	4.133071	5.672638	-1.13471		
Н	7.444914	3.043503	1.296306	Н	5.211916	2.813623	1.890933		
Н	5.38515	5.833127	-1.24621	Н	5.054591	5.16893	1.115913		
Н	7.310338	5.278884	0.222751	C	3.28452	1.201688	-2.01234		
0	2.159405	-0.45961	-2.21642	н	3.443451	1.312493	-3.09648		
F					TSBC				

Ru	1.642494	-0.80294	-0.28815	Ru	1.763937	-0.51753	-0.24542
Br	0.18938	-2.90386	-0.0459	Br	0.18539	-2.09278	-1.61977
Br	3.861015	-2.01569	0.58981	Br	3.729814	-2.26694	-0.0177
N	-0.77613	0.531932	0.226305	N	-0.78121	0.18051	0.768583
С	-2.03498	0.967138	-0.053	C	-2.01878	0.745657	0.692885
N	-2.15688	0.836779	-1.39228	N	-1.94082	1.650769	-0.3067
C	-0.9653	0.300978	-1.90102	C	-0.64906	1.60001	-0.84708
н	-0.896	0.084201	-2.95854	н	-0.41324	2.220698	-1.70231
С	-0.05587	0.078394	-0.89202	С	0.113366	0.658747	-0.20686
С	-2.89457	1.34812	1.020686	С	-3.07251	0.270365	1.532292
С	-3.3974	0.866391	-2.1589	C	-3.06484	2.236409	-1.03721
н	-3.10132	0.754299	-3.20944	н	-2.61773	2.926294	-1.76394
н	-3.87309	1.849633	-2.06315	н	-3.68223	2.839456	-0.36185
N	0.948672	-0.16363	1.530568	N	0.736167	-1.41437	1.420425
С	-2.39919	1.210034	2.298455	С	-2.78255	-0.79465	2.350881
Н	-3.03696	1.495231	3.134217	н	-3.56841	-1.18094	2.998637
С	-1.08425	0.714523	2.578568	С	-1.49705	-1.41929	2.385186
С	1.46698	-0.37876	2.747054	С	1.043167	-2.50242	2.122436
н	2.449596	-0.84788	2.758122	н	2.037737	-2.91026	1.928533
С	-0.28432	0.37572	1.485616	С	-0.49361	-0.89922	1.564495
С	0.766972	-0.04155	3.912318	С	0.128131	-3.08246	3.013918
н	1.235176	-0.23347	4.873163	н	0.422766	-3.96565	3.572084
С	-0.50502	0.501421	3.844064	С	-1.13957	-2.55081	3.144399
Н	-1.06226	0.745335	4.745992	н	-1.87167	-3.00448	3.809754
N	2.891691	0.732846	-0.56792	N	3.048909	0.659108	0.504801
н	1.695366	-2.51629	-2.16725	н	3.870281	0.189332	0.909254
C	-4.35759	-0.22141	-1.74631	C	3.337466	1.867057	-0.12303

C	-3.90712	-1.42318	-1.19516	н	2.509944	2.590097	-0.07552
C	-5.72533	-0.02036	-1.93462	н	3.152697	1.395107	-1.26878
C	-4.82251	-2.40749	-0.83118	0	2.520937	0.273369	-1.94914
Н	-2.84118	-1.60462	-1.04413	н	1.801877	0.598158	-2.50833
С	-6.63797	-1.00797	-1.57716	C	-3.90322	1.184904	-1.72197
Н	-6.0806	0.926325	-2.34301	C	-3.35209	-0.03417	-2.12392
С	-6.18787	-2.20321	-1.02038	С	-5.25386	1.442843	-1.95772
Н	-4.45935	-3.33818	-0.40145	C	-4.15208	-0.98722	-2.74849
Н	-7.70286	-0.8376	-1.72101	н	-2.29742	-0.26295	-1.95617
Н	-6.8996	-2.97423	-0.73408	С	-6.04982	0.492265	-2.59002
C	-4.26205	1.867545	0.797206	н	-5.69115	2.382551	-1.61834
C	-5.35913	1.203176	1.353335	С	-5.5005	-0.72676	-2.9833
C	-4.47198	3.045744	0.072739	н	-3.70841	-1.93337	-3.05051
С	-6.64577	1.703111	1.179318	н	-7.10363	0.699062	-2.76433
Н	-5.19788	0.271804	1.894562	н	-6.1232	-1.47292	-3.47155
C	-5.75951	3.544825	-0.10099	C	-4.43044	0.856696	1.523976
Н	-3.61614	3.582078	-0.33783	C	-4.6417	2.197203	1.86398
C	-6.84899	2.872173	0.450248	C	-5.52775	0.045274	1.220983
Н	-7.49285	1.170403	1.605317	C	-5.93228	2.717042	1.895687
Н	-5.9116	4.466771	-0.65775	н	-3.79008	2.825759	2.125689
Н	-7.8548	3.262857	0.314364	C	-6.81716	0.565742	1.255241
0	2.301955	-1.75491	-2.18672	н	-5.3575	-0.98771	0.919726
н	3.142741	-2.1048	-1.82898	С	-7.02151	1.901943	1.591228
C	3.805951	1.445221	-0.6797	н	-6.08954	3.757644	2.169969
C	5.026895	2.173387	-0.75415	н	-7.66251	-0.07069	1.004462
С	5.068871	3.503562	-1.19252	н	-8.02933	2.309525	1.618012
C	6.203621	1.512969	-0.36611	С	4.696245	2.43509	0.048777

C	6.287096	4.168962	-1.24296	C	5.812987	1.60679	-0.12859
Н	4.149139	4.00101	-1.49057	C	4.892335	3.787513	0.34276
С	7.414115	2.19062	-0.42657	C	7.097115	2.119311	0.015776
н	6.141024	0.48027	-0.02617	Н	5.666609	0.560359	-0.40344
C	7.45796	3.515007	-0.86142	C	6.178743	4.300978	0.479888
Н	6.324217	5.201244	-1.5821	Н	4.027606	4.437862	0.473145
Н	8.328553	1.682828	-0.13013	C	7.283745	3.466779	0.321763
Н	8.409534	4.039814	-0.90416	н	7.95605	1.467304	-0.12492
				н	6.319942	5.353933	0.714539
				н	8.288887	3.868459	0.429072
TSEF							
Ru	1.816308	-0.66753	-0.24184				
Br	0.254779	-2.26341	-1.5559				
Br	3.708236	-2.4349	0.039737				
N	-0.7147	0.14906	0.729068				
С	-1.93516	0.751594	0.643268				
N	-1.84553	1.584462	-0.41473				
С	-0.56749	1.455319	-0.97462				
Н	-0.32515	2.018237	-1.86671				
С	0.17571	0.533928	-0.28403				
С	-2.98006	0.367012	1.537311				
С	-2.96142	2.183951	-1.14354				
Н	-2.50696	2.826172	-1.90817				
Н	-3.53838	2.835338	-0.47695				
N	0.78415	-1.41294	1.473726				
С	-2.70062	-0.64403	2.425476				
Н	-3.48166	-0.95917	3.116077				

C	-1.42914	-1.2974	2.481746		
С	1.09172	-2.44311	2.262373		
Н	2.078219	-2.87763	2.086763		
C	-0.43576	-0.86891	1.596834		
С	0.185577	-2.92839	3.215274		
Н	0.478726	-3.76492	3.841872		
C	-1.07246	-2.36638	3.32504		
Н	-1.7958	-2.74989	4.042191		
N	2.953248	0.726547	0.26269		
0	2.589034	-0.07894	-2.03819		
Н	1.867253	0.158491	-2.63666		
С	-3.8595	1.140653	-1.76264		
С	-3.37899	-0.12626	-2.10239		
С	-5.19893	1.454755	-1.99589		
С	-4.23753	-1.06967	-2.66071		
Н	-2.33505	-0.39867	-1.93512		
С	-6.05287	0.513727	-2.56273		
Н	-5.58282	2.432183	-1.70143		
С	-5.57427	-0.7531	-2.89251		
Н	-3.84975	-2.05379	-2.914		
Н	-7.09729	0.765416	-2.73436		
Н	-6.24301	-1.492	-3.32805		
С	-4.31879	0.996852	1.514498		
C	-5.44762	0.213929	1.255989		
C	-4.47753	2.359148	1.790716		
С	-6.7161	0.785261	1.267153		
Н	-5.3198	-0.83984	1.010966		

C	-5.74716	2.928969	1.801672		
н	-3.60148	2.967085	2.018209		
С	-6.86806	2.142814	1.538229		
н	-7.58598	0.170091	1.049302		
н	-5.86299	3.986717	2.026617		
н	-7.85943	2.589681	1.547166		
С	4.718964	2.438105	-0.11687		
C	5.37143	3.094264	-1.16563		
C	5.086137	2.714614	1.208376		
С	6.376504	4.016619	-0.89624		
Н	5.088681	2.866391	-2.19167		
С	6.086294	3.639785	1.471502		
Н	4.580251	2.191793	2.017314		
С	6.734058	4.292512	0.421444		
н	6.88403	4.51909	-1.71633		
н	6.369287	3.850862	2.500346		
н	7.520046	5.014142	0.632077		
C	3.671271	1.476545	-0.41225		
Н	3.314358	1.039162	-1.54353		

References:

- 1 P. Daw, R. Petakamsetty, A. Sarbajna, S. Laha, R. Ramapanicker and J. K. Bera, *J. Am. Chem. Soc.*, 2014, **136**, 13987–13990.
- 2 Herbert, D. K. *Inorganic Synthesis*, *John Wiley & Sons: New York*, **1989**, *26*, 69.
- 3 W. A. Herrmann, M. Elison, J. Fischer, C. Köcher and G. R. J. Artus, *Chem. A Eur. J.*, 1996, **2**, 772–780.
- 4 B. Saha, G. Sengupta, A. Sarbajna, I. Dutta and J. K. Bera, *J. Organomet. Chem.*, 2014, **771**, 124–130.
- 5 Frisch, M. J. et al. *Gaussian 09, Revision B.01*; Gaussian, Inc., Wallingford, CT, **2009**.

- 6
- 7
- Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241. P. J. Hay and W. R. Wadt, *J. Chem. Phys.*, 1985, **82**, 299–310. G. A. Petersson and M. A. Al-Laham, *J. Chem. Phys.*, 1991, **94**, 6081–6090. 8
- W. J. Hehre, K. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257–2261. 9