Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Hydrogenation of CO₂ into aromatics over ZnZrO-Zn/HZSM-5 composite catalysts derived from ZIF-8

Haifeng Tian^{a,*}, Jiapeng Jiao^a, Fei Zha^{a,*}, Xiaojun Guo^a, Xiaohua Tang^a, Yue

Chang^{a, b} Hongshan Chen^c

^a College of Chemistry & Chemical Engineering, Northwest Normal University,

Lanzhou 730070, Gansu, China

^b Key Laboratory of Eco-functional Polymer Materials of the Ministry of

Education, Lanzhou 730070, Gansu, China

c College of Physics and Electronic Engineering, Northwest Normal University,

Lanzhou 730070, Gansu, China

^{*} Corresponding Author

Haifeng Tian, College of Chemistry & Chemical Engineering, Northwest Normal University,

Lanzhou 730070, Gansu, China.

Email: thfnwnu@163.com

Fei Zha, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China.

Email: zhafei@nwnu.edu.cn

Fig. S1 XRD patterns of ZIF-8.

Fig. S2 SEM images of ZIF-8.

Fig. S3 (a) SEM images and particle size calculation of Zn/Z5, (b)TEM images of Zn/Z5, (c) TEM images and corresponding EDS elemental mapping of Zn/Z5.

Fig. S4 N_2 adsorption-desorption isotherms and pore size distribution of Zn/Z5 zeolite.

Constant	Zn	Suface area $(m^2 \cdot g^{-1})$			Pore volume (cm ³ ·g ⁻¹)		
Samples	(wt%) ^a	$\mathbf{S}_{\text{BET}}^{b}$	S _{micro} ^c	\mathbf{S}_{meso}^{d}	V _{total} ^e	$V_{\text{micro}}{}^{\mathrm{f}}$	V _{meso} ^g
Zn/Z5	0.93	431.15	268.99	162.16	0.40	0.12	0.28

Table S1. The textural properties of Zn/Z5 zeolite.

^a analysed by ICP-OES, ^b surface area determined by BET, ^c micropore surface area determined by t-plot, ^d $S_{meso} = S_{BET}$ - S_{micro} , ^e total pore volume at p/p₀ = 0.99, ^f micropore volume determined by t-plot, ^g $V_{meso} = V_{BET}$ - V_{micro} .

Fig. S5 NH₃-TPD profile of Zn/Z5 zeolite.

Table S2. Acidic	properties	of Zn/Z5 zeoli	te determined	by NH ₃ -TPD.
------------------	------------	----------------	---------------	--------------------------

Samples —	The concentration of acid sites $(a.u. \cdot g^{-1})$					
	Weak	Medium	Strong	Total		
Zn/Z5	72.28	80.46	79.56	232.30		

Fig. S6 Py-IR spectra of Zn/Z5 zeolite at 150°C and 350°C.

Table S3. Distribution of B and L acid sites on Zn/Z5 zeolite determined by	y P	' y-II	R.
---	-----	---------------	----

Samples —	Amou	Amount of B (mmol \cdot g ⁻¹)			Amount of L (mmol \cdot g ⁻¹)		
	150°C	350°C	Total	150°C	350°C	Total	
Zn/Z5	0.074	0.067	0.141	0.355	0.183	0.538	

Fig. S7 H_2 -TPR profile of Zn/Z5 zeolite.

Fig. S8 XPS spectrum of Zn $(2p_{3/2})$ of Zn/Z5 zeolite.

The acidic properties of Zn/Z5 zeolite were studied by NH₃-TPD. As shown in Figure S5, three different NH₃ desorption peaks were detected in the low temperature zone (50-150°C), medium temperature zone (150-300°C) and high temperature zone (300-450°C). It shows that there are three types of acid centers in Zn/Z5 zeolite, corresponding to weak acid, medium strong acid and strong acid^{1, 2}. The concentration of different acid sites was listed in Table S2. The concentration of weak acid sites, medium strong acid sites and strong acid sites of Zn/Z5 zeolite were 72.28, 80.46 and 79.56 a.u. g⁻¹, respectively. The Brønsted (B) acid sites and Lewis (L) acid sites of Zn/Z5 zeolite at 150°C and 350°C were analyzed by Py-IR spectroscopy. As shown in Figure S6, three infrared absorption peaks were detected in Zn/Z5 zeolite. The absorption peak of pyridine molecules at 1450 cm⁻¹ is attributed to L acid sites, the absorption peak of pyridine molecules at 1550 cm⁻¹ is attributed to B acid sites and the absorption peak of pyridine molecules at 1493 cm⁻¹ is attributed to the combined action of B acid sites and L acid sites^{3,4}. The detailed distribution results of B acid sites and L acid sites were listed in Table S3. The concentration of B acid sites and L acid sites of Zn/Z5 zeolite were 0.141 and 0.538 mmol·g⁻¹, respectively. In order to deeply study the interaction between Zn and Z5 zeolite in Zn/Z5 catalyst, the presence of Zn species in Zn/Z5 catalyst was analyzed by H₂-TPR and XPS, respectively. Figure S7 shows the H₂-TPR profile of Zn/Z5 zeolite. It can be found that a typical reduction peak appears at about 545°C, which is attributed to the ZnOH⁺ species produced by the strong interaction between Zn and Z5 zeolite framework^{5, 6}. This was also confirmed by the XPS spectrum of Zn $2p_{3/2}$ on the Zn/Z5 zeolite surface (Figure S8), and the energy

spectrum peak attributed to the ZnOH⁺ species at 1022.2 eV^{7, 8}.

Notes and references

- 1. Y. Bi, Y. Wang, X. Chen, Z. Yu and L. Xu, Chin. J. Catal., 2014, 35, 1740-1751.
- X. Niu, J. Gao, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin and J. Wang, *Micropor. Mesopor. Mater.*, 2014, **197**, 252-261.
- K. Ji, J. Xun, P. Liu, Q. Song, J. Gao, K. Zhang and J. Li, *Chin. J. Chem. Eng.*, 2018, 26, 1949-1953.
- 4. A. S. Al-Dughaither and H. de Lasa, Ind. Eng. Chem. Res., 2014, 53, 15303-15316.
- 5. X. Su, K. Zhang, Y. Snatenkova, Z. Matieva, X. Bai, N. Kolesnichenko and W. Wu, *Fuel Process. Technol.*, 2020, **198**.
- X. Su, W. Zan, X. Bai, G. Wang and W. Wu, Catal. Sci. Technol., 2017, 7, 1943-1952.
- 7. X. Niu, J. Gao, K. Wang, Q. Miao, M. Dong, G. Wang, W. Fan, Z. Qin and J. Wang, *Fuel Process. Technol.*, 2017, **157**, 99-107.
- 8. J. Chen, L. Chang, H. Kang and F. Ding, Chin. J. Catal., 2001, 22, 229-232.