Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

One-step calcination synthesis of WC-Mo₂C heterojunction nanoparticles as novel H₂-production cocatalysts for enhanced photocatalytic activity of TiO₂

Lulu Gao^a, Jinfeng Liu^a, Haoyu Long^b, Ping Wang^{*ab} and Huogen Yu^{*ab}

^a School of Materials Science and Engineering, Wuhan University of Technology,

Wuhan, 430070, PR China

^b School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University

of Technology, Wuhan, 430070, PR China

*Corresponding authors. Tel: +86(27)87749379; E-mail: wangping0904@whut.edu.cn (Ping Wang); yuhuogen@whut.edu.cn (Huogen Yu)

Number of pages: 13

Number of Figures: 2

Number of Tables: 4

Supporting Information Content	page
Experimental	S3-S6
Table S1	S 7
Table S2	S8
Table S3	89
Table S4	S10
Fig. S1	S12
Fig. S2	S13

SI Experimental

SI-1 Materials

Titanium dioxide (TiO₂-P25), melamine $(C_3N_3(NH_2)_3),$ ammonium heptamolybdate $((NH_4)_6Mo_7O_{24} \cdot 4H_2O),$ ammonium metatungstate hydrate $((NH_4)_6H_2W_{12}O_{40}\cdot xH_2O),$ sodium sulfide $(Na_2S \cdot 9H_2O),$ cadmium nitrate (Cd(NO₃)₂·4H₂O), Zinc nitrate (Zn(NO₃)₂·6H₂O), methanol (CH₃OH), sodium sulfate (Na₂SO₄), and lactic acid (CH₃CH(OH)COOH) were of analytical grade from Shanghai Chemical Reagent Ltd. (PR China) and used without further purification.

SI-2 Preparation of WC-Mo₂C@C(1:2)/TiO₂(5 wt%), WC-Mo₂C@C(4:3)/TiO₂(5 wt%) and WC-Mo₂C@C(4:1)/TiO₂(5 wt%) photocatalysts

To compare the photocatalytic hydrogen-production performance of TiO₂ modified by different cocatalysts with different mole ratios of W/Mo, WC-Mo₂C@C(1:2)/TiO₂(5 wt%), WC-Mo₂C@C(4:3)/TiO₂(5 wt%) and WC-Mo₂C@C(4:1)/TiO₂(5 wt%) photocatalysts were prepared by a facile electrostatic self-assembly approach. In a brief, 2.5 mg of the previous hetero-phase WC-Mo₂C@C(1:2), WC-Mo₂C@C(4:3) and WC-Mo₂C@C(4:1) were dispersed into TiO₂ methanol solution (50 mg of TiO₂ in 80 ml of methanol solution) under sonication for 0.5 h to acquire WC-Mo₂C@C(1:2)/TiO₂(5 wt%) composite samples, respectively. According to the results in Fig. S1, the resultant WC-Mo₂C@C(4:3)/TiO₂(5 wt%) exhibited the

highest photocatalytic performance. Therefore, in this study, the WC- $Mo_2C@C(4:3)/TiO_2$ was simplified as the WC- $Mo_2C@C/TiO_2$ in the following text.

SI-3 Characterization

Microstructures and morphologies of the as-prepared samples were conducted by X-ray diffraction (XRD) ((D/MAXRB, RIGAKU, Japan), Raman microscope (InVia, Renishaw, UK), and Transmission electron microscopy (TEM and HRTEM) (Talos F200S, Thermo Fisher, USA). Elemental analyses of photocatalysts were measured via X-ray photoelectron spectroscopy (XPS) ((ESCALAB 250Xi, Thermo Scientific, USA) with Al K α source and inductively coupled plasma (ICP) (Prodigy 7, LEEMAN LABS, USA). UV-vis spectrophotometer (UV-2450, Shimadzu, Japan) was used to characterize the optical absorption property.

SI-4 Photocatalytic H₂ production activity

Photocatalytic hydrogen evolution activity was evaluated with 50 mg of photocatalyst in 80 mL methyl alcohol (10 vol%) solution in a Pyrex glass reaction cell under four LEDs (3 W, 365 nm, Shenzhen Lamplic Science Co. Ltd., China). The system was degassed under the N₂ atmosphere for 15 min. After four 365 nm-LED lamps irradiated the system, 400 μ L of gas was injected into a gas chromatograph (Shimadzu, GC-2014C, Japan) with a thermal conductivity detector and a 5 Å molecular sieve column. The apparent quantum efficiency (AQE) was calculated according to the following the equation S1:

$$AQE(\%) = \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100$$
$$= \frac{\text{number of evolved H}_2 \text{ molecules} \times 2}{\text{number of incident photons}} \times 100$$
(S1)

SI-5 Photoelectrochemical measurements

Photoelectrochemical (PEC) curves were measured on an electrochemical analyzer (CHI660E, China) in a standard three-electrode configuration. The prepared samples were loaded on fluorine-doped tin oxide (FTO) conductor glass, a standard Ag/AgCl electrode and the platinum foil as the working electrodes, reference electrode and counter electrode, respectively, with Na₂SO₄ (0.5 mol L⁻¹) as the electrolyte solution. The method of working electrodes was the same as in our previous works. Linear sweep voltammetry (LSV) curves were obtained in the potential ranging of -1.0 to -1.6 V with a scan rate of 10 mV s⁻¹. Transient photocurrent responses with time (*i-t* curves) were recorded at 0.5 V bias potential during periodic ON/OFF illumination cycles under a 3W LED lamp (365 nm), and electrochemical impedance spectroscopy (EIS) curves were conducted at the frequency range of $0.01-10^5$ Hz with an ac amplitude of 10 mV under the open-circuit voltage.

SI-6 DFT computational methods

The first principle calculations were carried out by using the Vienna Ab initio Simulation Package (VASP). Generalized gradient approximation (GGA) with Perdew-Burke-Ernzerhof (PBE) functional was selected to describe the exchangecorrelation interaction. The energy cutoff and Monkhorst–Pack k-point mesh were set as 450 eV and 3 × 3 × 1, respectively. The convergence threshold was set as 10^{-5} eV for energy and 0.01 eV·Å⁻¹ for force. To eliminate interactions between periodic structures, a vacuum of 20 Å was added. The Gibbs free energy of H atom adsorption ($\Delta G_{\text{H}*}$) was defined as following the equation S2:

$$\Delta G_H = \Delta E_H + \Delta E_{ZPE} - T\Delta S_H \tag{S2}$$

where ΔE_H , ΔE_{ZPE} , $T\Delta S_H$ are the differential hydrogen ΔE_H adsorption energy, the change in zero point energy and entropy between the adsorbed hydrogen and molecular hydrogen in gas phase, respectively, and T is the temperature. The term $T\Delta S_H$ was calculated to be -0.20 eV. Mo₂C model was composed of 64 Mo atoms and 32 C atoms. During the geometry optimization, the bottom half of Mo and C atoms were fixed, while other atoms were relaxed. To simulate the hetero-phase structure of WC-Mo₂C, the WC-Mo₂C model was constructed by replacing two adjacent Mo atoms with one W atom.

Samples	Mo W		W:Mo	WC:Mo ₂ C
	(wt%)	(wt%)	molar ratio	molar ratio
Mo ₂ C@C	75.1	-	-	-
WC-Mo ₂ C@C(1:2)	47.9	19.8	1:4	1:2
WC-Mo ₂ C@C(4:3)	29.6	37.9	2:3	4:3
WC-Mo ₂ C@C(4:1)	15.2	54.4	2:1	4:1
WC@C	-	68.8	-	-

Table S1. The element compositions and contents of various samples according toICP results.

Samples	Мо	С	Ti	Ο	Mo:TiO ₂ wt%
TiO ₂	-	52.89	16.32	30.79	-
WC-Mo ₂ C@C/TiO ₂	0.24	32.68	20.95	45.03	1.8

Table S2. The element components of various samples according to XPS results.

Sample	H ₂ -evolution activity (µmol h ⁻¹ g ⁻¹)	AQE (%)	
TiO ₂	10	0.03	
Mo ₂ C@C/TiO ₂ (5 wt%)	254	0.78	
WC-Mo ₂ C@C/TiO ₂ (0.5 wt%)	350	1.05	
WC-Mo ₂ C@C/TiO ₂ (1 wt%)	762	2.28	
WC-Mo ₂ C@C/TiO ₂ (5 wt%)	903	2.70	
WC-Mo ₂ C@C/TiO ₂ (10 wt%)	781	2.34	
WC@C/TiO ₂ (5 wt%)	357	1.08	
WC-Mo ₂ C@C(1:2)/TiO ₂ (5 wt%)	738	2.21	
WC-Mo ₂ C@C(4:3)/TiO ₂ (5 wt%)	003	2 70	
(WC-Mo ₂ C/TiO ₂ (5 wt%))	203	2.70	
WC-Mo ₂ C@C(4:1)/TiO ₂ (5 wt%)	672	2.16	

Table S3. The H₂-evolution performance and apparent quantum efficiency (AQE) of various samples.

Photocatalyst	Method	Light source	Sacrificial agent	H ₂ -production rate (µmol h ⁻¹ g ⁻¹)	AQE %	Ref.
Mo ₂ C/TiO ₂	calcination	Xe (300 W)	triethanola mine	39400 (25 times)	12.3	R1
rGO-Mo ₂ C/TiO ₂	sonication	LED (365 nm 3W)	methanol 10 vol%	880 (88 times)	2.64	R2(our work)
MoC- Mo ₂ C@C/TiO ₂	sonication	LED (365 nm 3 W)	methanol 10 vol%	918 (91 times)	2.7	R3(our work)
MoC@C/TiO ₂	sonication	LED (365 nm 3 W)	methanol 10 vol%	504 (50 times)	1.43	R4(our work)
Mo ₂ C/TiO ₂	calcination	mercury lamp (387 nm 125 W)	deionized water	52.5 (15 times)	-	R5
Mo ₂ C@C/CdS	sonication	Xe (420 nm 300 W)	lactic acid 10 vol %	5543 (26 times)	-	R6
MoS_2/TiO_2	hydrolysis calcination	LED (365 nm 3.5W)	methanol 20 vol%	2443 (10 times)	8.3	R7
MoS_2/TiO_2	hydrothermal	LED (3 W 360 nm)	methanol 10 vol%	2145 (36 times)	6.4	R8
MoN/TiO ₂	mechanically mixing	Xe (300 W)	ethanol 20 vol%	2034 (40 times)	-	R9
WC- Mo ₂ C@C/TiO ₂	sonication	LED (365 nm 3 W)	methanol 10 vol%	903 (90.3 times)	2.70	This work

Table S4. The apparent quantum efficiency (AQE) for various photocatalysts

- Ref 1. X. Yue, S. Yi, R. Wang, Z. Zhang, S. Qiu, A novel architecture of dandelionlike Mo₂C/TiO₂ heterojunction photocatalysts towards high-performance photocatalytic hydrogen production from water splitting, *Journal of Materials Chemistry A* 2017, 5 (21), 10591-10598.
- Ref 2. J. Liu, P. Wang, J. Fan, H. Yu, J. Yu, In situ synthesis of Mo₂C nanoparticles on graphene nanosheets for enhanced photocatalytic H₂-production activity of TiO₂, ACS Sustainable Chemistry & Engineering 2021, 9(10), 3828-3837.
- **Ref 3.** J. Liu, P. Wang, J. Fan, H. Yu, J. Yu, Hetero-phase MoC-Mo₂C nanoparticles for enhanced photocatalytic H₂-production activity of TiO₂, *Nano Research*

2020, 14 (4), 1095-1102.

- Ref 4. J. Liu, P. Wang, J. Fan, H. Yu, J. Yu, Carbon-coated cubic-phase molybdenum carbide nanoparticle for enhanced photocatalytic H₂-evolution performance of TiO₂, *Journal of Energy Chemistry* 2020, 51, 253-261.
- Ref 5. H. Li, W. Hong, Y. Cui, S. Fan, L. Zhu, Effect of Mo₂C content on the structure and photocatalytic property of Mo₂C/TiO₂ catalysts, *Journal of Alloys* and Compounds 2013, 569, 45-51.
- Ref 6. Y.-X. Pan, J.-B. Peng, S. Xin, Y. You, Y.-L. Men, F. Zhang, M.-Y. Duan, Y. Cui, Z.-Q. Sun, J. Song, Enhanced visible-light-driven photocatalytic H₂ evolution from water on noble-metal-free CdS-nanoparticle-dispersed Mo₂C@C nanospheres, ACS Sustainable Chemistry & Engineering 2017, 5(6), 5449-5456.
- Ref 7. W. Wang, S. Zhu, Y. Cao, Y. Tao, X. Li, D. Pan, D.L. Phillips, D. Zhang, M. Chen, G. Li, H. Li, Edge-enriched ultrathin MoS₂ embedded yolk-shell TiO₂ with boosted charge transfer for superior photocatalytic H₂ evolution, *Advanced Functional Materials* 2019, 29 (36) 1901958.
- Ref 8. Y.-J. Yuan, Z.J. Ye, H.W. Lu, B. Hu, Y.H. Li, D.Q. Chen, J.S. Zhong, Z.T. Yu, Z.G. Zou, Constructing anatase TiO₂ nanosheets with exposed (001) facets/layered MoS₂ two-dimensional nanojunctions for enhanced solar hydrogen generation, ACS Catalysis 2015, 6 (2), 532-541.
- Ref 9. J. Ran, H. Wang, H. Jin, C. Ling, X. Zhang, H. Ju, L. Jing, J. Wang, R. Zheng, S.-Z. Qiao, Metallic MoN ultrathin nanosheets boosting high performance photocatalytic H₂ production, *Journal of Materials Chemistry A* 2018, 6 (46), 23278-23282.

Fig. S1. The photocatalytic H₂-evolution activity of (a) $Mo_2C@C/TiO_2(5 wt\%)$, (b) WC-Mo₂C@C(1:2)/TiO₂(5 wt%), (c) WC-Mo₂C@C(4:3)/TiO₂(5 wt%), (d) WC-Mo₂C@C(4:1)/TiO₂(5 wt%), (e) WC@C/TiO₂(5 wt%).

Fig. S2. (A) XRD patterns, (B) FTIR spectra, and (C) UV-vis spectra for the WC- $Mo_2C@C/TiO_2(5 wt\%)$ sample: (a) before and (b) after photocatalytic H₂ evolution.