Boosting the performance of Ni/Al₂O₃ for the Reverse Water Gas Shift reaction through formation of copper-nickel nanoalloys

Esteban Gioria ^a, Piyush Ingale ^a, Felix Pohl ^a, Raoul Naumann d'Alnoncourt ^{a*}, Arne Thomas ^b, Frank Rosowski ^{a,c}

^a BasCat – UniCat BASF JointLab, Technische Universität Berlin, Berlin 10623, Germany.

^b Functional Materials, Department of Chemistry, Technische Universität Berlin, Berlin 10623, Germany

^c BASF SE, Process Research and Chemical Engineering, Ludwigshafen 67056, Germany

* r.naumann@bascat.tu-berlin.de

Table of Contents

Figure S1. Thermogravimetric analysis of uncalcined samples
Figure S2. Nitrates decomposition temperature of copper, nickel, and copper-nickel catalyst4
$Figure \ S3. \ TGA-MS \ Study \ of \ Cu_{50}Ni_{50}/Al_2O_3 \ prepared \ via \ impregnation \ of \ nitrates5$
Table S1. Elemental composition of the impregnated and calcined CuNi/Al ₂ O ₃ catalysts. n/d: below detection limit
Table S2. Hydrogen consumption of the different catalysts after reduction pretreatment at 900°C and 500°C. 7
Figure S4. a) Nitrogen sorption isotherms and b) pore size distribution of CuNi/Al ₂ O ₃ catalyst8
Table S3. Comparison of the Cu/Ni atomic ratio determined by XPS and ICP analysis
Figure S5. Catalytic performance of the CuNi/Al ₂ O ₃ catalysts during the 30h of time on stream: a) CO ₂ conversion; b) CO selectivity; c) space-time yield of carbon monoxide10
Figure S6. Hydrogen consumption of the different catalysts during time on stream
Figure S7. STEM-EDS study of fresh Ni/Al ₂ O ₃ catalyst
Figure S8. STEM-EDS study of spent Ni/Al ₂ O ₃ catalyst (after reaction)
Figure S9. STEM-EDS study of fresh Cu/Al ₂ O ₃ catalyst
Figure S10.a. STEM-EDS study of spent Cu/Al ₂ O ₃ catalyst15
Figure S10.b. STEM-EDS study of spent Cu/Al ₂ O ₃ catalyst15
Figure S11. STEM-EDS study of fresh Cu ₂₅ Ni ₇₅ /Al ₂ O ₃ catalyst16
Figure S12. STEM-EDS study of Cu ₂₅ Ni ₇₅ /Al ₂ O ₃ after reaction17
Figure S13. STEM-EDS study of fresh Cu ₅₀ Ni ₅₀ /Al ₂ O ₃ catalyst
Figure S14.a. STEM-EDS study of spent Cu ₅₀ Ni ₅₀ /Al ₂ O ₃ catalyst19
Figure S14.b. STEM-EDS study of spent Cu ₅₀ Ni ₅₀ /Al ₂ O ₃ catalyst
Figure S15. STEM-EDS study of fresh Cu ₇₅ Ni ₂₅ /Al ₂ O ₃ catalyst20
Figure S16.a. STEM-EDS study of spent Cu ₇₅ Ni ₂₅ Al ₂ O ₃ catalyst21
Figure S16.b. STEM-EDS study of spent Cu ₇₅ Ni ₂₅ Al ₂ O ₃ catalyst
Figure S17. Particle size distribution of both fresh and spent CuNi/Al ₂ O ₃ catalyst22
Table S4. Elemental composition of both fresh and spent CuNi/Al ₂ O ₃ catalysts23

Figure S1. Thermogravimetric analysis of uncalcined samples.

a) TGA; b) DTGA analysis. Conditions: From 20°C up to 900°C, 10K min-1, 21% O₂ in Ar, 20 ml min⁻¹.

Figure S2. Nitrates decomposition temperature of copper, nickel, and copper-nickel catalyst. Prepared via impregnation of nitrates on γ -alumina. Conditions: 25mg of sample, 10K min⁻¹, 21% O₂ in N₂, 20 ml min⁻¹.

Figure S3. TGA – MS Study of Cu₅₀Ni₅₀/Al₂O₃ prepared via impregnation of nitrates. Conditions: From 20°C to 800°C, 2Kpm, 30min hold, 21% O₂ in Ar, 100 ml min⁻¹. m/e = 18 (H₂O), 30 (NO) and 44 (NO₂).

CNHS Analysis (%)						
Sample	Treatment	С	Ν	Н	S	
Al ₂ O ₃	Not Calcined	0,06	n/d	0,64	0	
Cu/Al ₂ O ₃	Impregnated	0,03	1,53	0,96	0	
	Calcined	0,12	n/d	0,42	0	
Cu75Ni25/Al2O3	Impregnated	0.01	1.55	1.05	0	
	Calcined	0.23	n/d	0.69	0	
Cu50Ni50/Al2O3	Impregnated	0,03	1,54	0,99	0	
	Calcined	0,08	n/d	0,41	0	
Cu25Ni75/Al2O3	Impregnated	0.01	1.61	0.96	0	
	Calcined	0.20	n/d	0.71	0	
Ni/Al ₂ O ₃	Impregnated	0,02	1,51	1,03	0	
	Calcined	0,07	n/d	0,42	0	

Table S1. Elemental composition of the impregnated and calcined CuNi/Al ₂ O ₃ catalysts. n/d
below detection limit.

Sample	m(cat) / mg	Theoretical H2 consumption /mmol	Experimental H2 consumption (Tmax=500°C) /mmol (Relative)	Experimental H ₂ consumption (Tmax=900°C) /mmol (Relative)
Cu/Al ₂ O ₃	256	0.20	0.19 (95)	0.20 (100%)
Cu75Ni25/Al2O3	255.7	0.19	0.14 (74%)	0.19 (100%)
Cu ₅₀ Ni ₅₀ /Al ₂ O ₃	268.9	0.20	0.12 (60%)	0.20 (100%)
Cu25Ni75/Al2O3	249.5	0.18	0.06 (34%)	0.18 (100%)
Ni/Al ₂ O ₃	262.9	0.22	0.03 (13%)	0.20 (91%)
Al ₂ O ₃	203.8	0	0	0

Table S2. Hydrogen consumption of the different catalysts after reduction pretreatment at 900°C and 500°C.

The hydrogen consumption was calculated at 500°C (corresponding to the reduction pretreatment prior to catalysis) and 900°C 8corresponding to the highest temperature analyzed in the Belcat-II H₂-TPR setup).

Figure S4. a) Nitrogen sorption isotherms and b) pore size distribution of CuNi/Al₂O₃ catalyst.

Sample	Name	Position (eV)	% at. XPS	Cu/Ni ratio	% at. ICP	Cu/Ni ratio
Cu25Ni75/Al2O3	Cu 2p	932.67	21	0.27	26	0.35
	Ni 2p	856.48	79	0.27	74	0.00
Cu50Ni50/Al2O3	Cu 2p	932.49	53	1.12	49	0.96
	Ni 2p	856.59	47		51	
Cu75Ni25/Al2O3	Cu 2p	932,65	77	3.35	75	3
	Ni 2p	856,63	23		25	

Table S3. Comparison of the Cu/Ni atomic ratio determined by XPS and ICP analysis.

Figure S5. Catalytic performance of the CuNi/Al₂O₃ catalysts during the 30h of time on stream: a) CO₂ conversion; b) CO selectivity; c) space-time yield of carbon monoxide.

Figure S6. Hydrogen consumption of the different catalysts during time on stream.

Figure S7. STEM-EDS study of fresh Ni/Al_2O_3 catalyst.

Figure S8. STEM-EDS study of spent Ni/Al_2O_3 catalyst (after reaction).

Figure S9. STEM-EDS study of fresh Cu/Al_2O_3 catalyst.

Figure S10.a. STEM-EDS study of spent Cu/Al₂O₃ catalyst.

 $\label{eq:Figure S10.b. STEM-EDS study of spent Cu/Al_2O_3 \ catalyst.$ Agglomerates up to 100 nm of copper could be observed in the spent Cu/Al_2O_3 \ catalyst.

Figure S11. STEM-EDS study of fresh $Cu_{25}Ni_{75}\!/Al_2O_3\,catalyst.$

Figure S12. STEM-EDS study of $Cu_{25}Ni_{75}/Al_2O_3$ after reaction.

Some isolated agglomerates up to 20 nm could be observed in the spent Cu₂₅Ni₇₅/Al₂O₃ catalyst.

Figure S13. STEM-EDS study of fresh $Cu_{50}Ni_{50}/Al_2O_3$ catalyst.

Figure S14.a. STEM-EDS study of spent Cu₅₀Ni₅₀/Al₂O₃ catalyst.

Figure S14.b. STEM-EDS study of spent $Cu_{50}Ni_{50}/Al_2O_3$ catalyst.

Agglomerates up to 80 nm of bimetallic $Cu_{50}Ni_{50}$ nanoparticles could be observed in the spent $Ni_{50}Cu_{50}/Al_2O_3$ catalyst.

Figure S15. STEM-EDS study of fresh $Cu_{75}Ni_{25}/Al_2O_3$ catalyst.

Figure S16.a. STEM-EDS study of spent $Cu_{75}Ni_{25}Al_2O_3$ catalyst.

Figure S16.b. STEM-EDS study of spent Cu₇₅Ni₂₅Al₂O₃ catalyst.

Figure S17. Particle size distribution of both fresh and spent CuNi/Al₂O₃ catalyst.

CNHS Analysis (%)						
Sample	Condition	С	Ν	Н	S	
Cu/Al2O3	Fresh	0.297	0.024	0.854	-	
	Spent	0.378	0.029	0.829	-	
Cu75Ni25/Al2O3	Fresh	0.276	0.032	0.795	-	
	Spent	3.711	0.117	0.965	-	
Cu50Ni50/Al2O3	Fresh	0.997	0.034	0.900	-	
	Spent	0.165	0.138	0.938	-	
Cu25Ni75/Al2O3	Fresh	0.272	0.037	0.843	-	
	Spent	0.160	0.036	0.974	-	
Ni/Al2O3	Fresh	0.427	0.017	0.917	-	
	Spent	0.201	0.120	0.771		

Table S4. Elemental composition of both fresh and spent $CuNi/Al_2O_3\,catalysts.$