Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Evidence for "cocktail"-type catalysis in Buchwald-Hartwig reaction. A mechanistic study

Darya O. Prima[§], Malena Madiyeva^{†§}, Julia V. Burykina[§], Mikhail E. Minyaev[§], Daniil A. Boiko,^{†§} Valentine P. Ananikov^{†§*}

[§]Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia;

[§] Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia

*e-mail: val@ioc.ac.ru;

http://AnanikovLab.ru

Contents

Experimental Section	3
NMR spectra of the obtained compounds	5
ESI-HRMS spectra of the obtained compounds	11
Palladium nanoparticles found in the Buchwald-Hartwig reaction mixture	20
X-ray crystallographic data and refinement details	23
The structure of 2a	26
The structure of 2b	29
The structure of 2c	32
The structure of 3a	37
The structure of 3b	44
The structure of 3c	55

Experimental Section

Scheme S1. Synthesis of imidazolium salt.

Results of the Buchwald-Hartwig reaction.^a

Dipp N X Pd-N N X Dipp						
entry	[Pd]	time, min	yield, %			
1		10	48			
2	10	60	67			
3	1a	120	68			
4		240	72			
5		10	48			
6	11.	60	70			
7	10	120	72			
8		240	72			
9		10	46			
10	10	60	49			
11	10	120	49			
12		240	60			

^a Reaction conditions: 1 mmol 4-Bromo-*N*,*N*-dimethylaniline, 1.2 mmol morpholine, 1.5 mmol *t*BuOK and 0.5 mol% of corresponding [Pd] complex in the 1 ml toluene, 85 °C. Reactions were performed five times and the yields were averaged. The yields were determined by ¹H NMR.

Optimization of the model Buchwald-Hartwig reaction of morpholine and 4-bromo-*N*,*N*-dimethylaniline (the yields were determined by ¹H NMR).

Solvent	Base	[Pd] 1b, mol%	Yield, %	Solvent	Base	[Pd] 2b, mol%	Yield, %
Toluene	tBuOK	1	79	Acetonitrile	tBuOK	2	<1
Toluene	tBuOK	0.5	72	THF	tBuOK	2	49
Acetonitrile	tBuOK	1	-	Dioxane	tBuOK	2	54
Dioxane	tBuOK	1	48	Toluene	PhONa	2	<1
THF	tBuOK	1	39	Toluene	K_2CO_3	2	-
Toluene	tBuONa	2	27	Toluene	DBU	2	-
				Toluene	tBuONa	2	27
				Toluene	tBuOK	2	>99
				Toluene	tBuOK	1	97
				Toluene	tBuOK	0.5	97
				Toluene	tBuOK	0.2	43

Solvent	Base	[Pd] 3b, mol%	Yield, %
Toluene	tBuOK	1	81
Toluene	tBuOK	0.5	74
Toluene	DBU	1	-
Toluene	K_2CO_3	1	-
Toluene	PhONa	1	<1
Toluene	tBuOK	2	>99

Figure S1. ¹H NMR spectra of 2a. Solvent: DMSO-*d*6.

Figure S2. ¹³C {¹H} NMR spectra of **2a**. Solvent: DMSO-*d*6.

Figure S3. ¹H NMR spectra of 2b. Solvent: DMSO-*d*6.

Figure S4. ¹³C {¹H} NMR spectra of **2b**. Solvent: DMSO-*d*6.

Figure S5. ¹H NMR spectra of 2c. Solvent: DMSO-*d*6.

Figure S6. ¹³C {¹H} NMR spectra of **2c.** Solvent: DMSO-*d*6.

Figure S7. ¹H NMR spectra of **3a**. Solvent: benzene-*d*6.

Figure S8. ¹³C {¹H} NMR spectra of **3a**. Solvent: benzene-*d*6.

Figure S9. ¹H NMR spectra of **3b**. Solvent: benzene-*d*6.

Figure S10. ¹³C $\{^{1}H\}$ NMR spectra of 3b. Solvent: benzene-d6.

Figure S11. ¹H NMR spectra of **3c**. Solvent: benzene-*d*6.

Figure S12. ¹³C {¹H} NMR spectra of **3c**. Solvent: benzene-*d*6.

Figure S13. Experimental and theoretical ESI-(+)HRMS spectrum of **2a** in CH₃CN solution: experimental peak $[M]^+$ = 1095.2892 Da, calculated for C₅₄H₇₂N₄Pd₂Cl₃ = 1095.2896, Δ = 0.3 ppm,

Figure S14. Experimental and theoretical ESI-(+)HRMS spectrum of **2b** in CH₃CN solution; experimental peak $[M]^+$ = 1229.1381 Da, (C) calculated for C₅₄H₇₂N₄Pd₂Br₃ = 1229.1370, Δ = 0.9 ppm.

Figure S15. Experimental and theoretical ESI-(+)HRMS spectrum of **2c** in CH₃CN solution; experimental peak $[M]^+$ = 1371.0967 Da, calculated for C₅₄H₇₂N₄Pd₂I₃ = 1371.0982, Δ = 1.1 ppm.

Figure S16. Experimental and theoretical ESI-(+)HRMS spectrum of **3a** in CH₃CN solution; experimental peak $[M]^+$ = 1077.3267 Da, calculated for C₅₄H₇₂N₄Pd₂OHCl₂ = 1077.3240, Δ = 2.3 ppm.

Figure S17. Experimental and theoretical ESI-(+)HRMS spectrum of **3b** in CH₃CN solution; experimental peak $[M]^+ = 1167.2233$ Da, calculated for C₅₄H₇₂N₄Pd₂OHBr₂ = 1167.2222, $\Delta = 0.9$ ppm (partial signal overlap does not interfere with the correct interpretation of the spectrum).

Figure S18. Experimental and theoretical ESI-(+)HRMS spectrum of **3c** in CH₃CN solution; experimental peak $[M]^+$ = 1261.1966 Da, calculated for C₅₄H₇₂N₄Pd₂(OH)I₂= 1261.1965, Δ = 0.01 ppm.

Figure S19. Experimental peak $[M]^+$ = 389.2957 Da, calculated for $C_{27}H_{37}N_2$ = 389.2951, Δ = 1.5 ppm detected in the reaction mixture with **1b**.

Figure S20. Experimental peak $[M]^+$ = 443.2471 Da, calculated for C₂₇H₃₆N₂OK = 443.2459, Δ = 2.7 ppm detected in the reaction mixture with **1b**.

Figure S21. Experimental peak $[M]^+$ = 389.2957 Da, calculated for $C_{27}H_{37}N_2$ = 389.2951, Δ = 1.5 ppm detected in the reaction mixture with **2b**.

Figure S22. Experimental peak $[M]^+$ = 443.2474 Da, calculated for C₂₇H₃₆N₂OK = 443.2459, Δ = 3.4 ppm detected in the reaction mixture with **2b**.

Figure S23. Experimental peak $[M]^+$ = 389.2956 Da, calculated for $C_{27}H_{37}N_2$ = 389.2951, Δ = 1.3 ppm detected in the reaction mixture with **3b**.

Figure S24. Experimental peak $[M]^+$ = 443.2463 Da, calculated for C₂₇H₃₆N₂OK = 443.2459, Δ = 0.9 ppm detected in the reaction mixture with **3b**.

Figure S25. ESI-(+)HRMS study of Buchwald-Hartwig reaction mixtures with different palladium precursors: (A) **1b**; (B) **2b**; (C) **3b. Reaction conditions:** 1 mmol 4-bromo-*N*,*N*-dimethylaniline, 1.5 mmol morpholine, 1.5 mmol *t*BuOK, 1 ml toluene and 0.5 mol% [Pd], 85°C, 30 min. Calculated patterns for $[C_{35}H_{46}N_3Pd]^+ = 614.2734$ Da, $[C_{39}H_{55}N_4OPd]^+ = 701.3419$ Da, $[C_{43}H_{55}N_4Pd]^+ = 733.3471$ Da, $[C_{51}H_{64}N_5Pd]^+ = 852.4208$ Da were colored in purple.

Figure S26. Experimental and theoretical ESI-(+)HRMS spectrum of the reaction mixture with precipitate from **2b** in CH₃CN solution: experimental peak $[M]^+ = 717.3367$ Da, calculated for C₃₉H₅₅N₄O₂Pd = 717.3369, $\Delta = 0.3$ ppm (partial signal overlap does not interfere with the correct interpretation of the spectrum).

Figure S27. Experimental ESI-(+)HRMS spectrum of the reaction mixture with precipitate from 2b in CH₃CN solution.

Palladium nanoparticles found in the Buchwald-Hartwig reaction mixture

Figure S28. TEM images and the size distribution of palladium nanoparticles in the initial catalyst before the Buchwald-Hartwig reaction. Pd-NHC complexes: (A) **1b**; (B) **2b**. **3b** – it is not reliable to calculate the distribution because there are too few particles.

Figure S29. SEM images of separated Pd nanoparticles after the Buchwald-Hartwig reaction (A-C) and their EDX spectra.

Figure S30. TEM image of palladium nanoparticles obtained at 19 h of the Buchwald-Hartwig reaction. 50k magnification.

Figure S31. TEM image of palladium nanoparticles obtained at 19 h of the Buchwald-Hartwig reaction. 50k magnification.

Figure S32. TEM image of palladium nanoparticles obtained at 19 h of the Buchwald-Hartwig reaction. 100k magnification.

Figure S33. TEM image of palladium nanoparticles obtained at 19 h of the Buchwald-Hartwig reaction. 100k magnification.

X-ray crystallographic data and refinement details.

X-ray diffraction data were collected on a Bruker Quest D8 diffractometer equipped with a Photon-III area detector (shutterless φ - and ω -scan technique) using graphite-monochromatized Mo K_a-radiation (λ =0.71073 Å). The intensity data were integrated by the SAINT program¹ and semi-empirically corrected from equivalent reflections for absorption and decay with SADABS² (for 2a, 2b, 2c, 3a and 3b) or with TWINABS¹ (for 3c). The structures were solved by direct methods using SHELXT³ and refined by full-matrix least-squares on F^2 using SHELXL.⁴ All nonhydrogen atoms were refined with anisotropic displacement parameters. Positions of hydroxy hydrogen atoms in 3a and 3c were found from electron difference-density maps. In the case of **3a**, the positions of these atoms were restrained at a distance of 0.84 Å from the corresponding oxygen atoms. All other hydrogen atoms, including hydroxy atoms in **2b**, were placed in ideal calculated positions (C-H distance = 0.850 Å for hydroxy (in **3b**), 0.950 Å for aromatic, 0.980 Å for methyl, 0.990 Å for methylene and 1.000 Å for tertiary hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters. ($U_{iso}(H)=1.5 U_{eq}(C)$ for methyl, 1.2 $U_{eq}(C)$ for other hydrogen atoms). A rotating group model was applied for methyl groups. The disordered fragments were modeled by applying similarity constraints on anisotropic displacement parameters on similar atoms and by constraining similar distances to be equal within the deviation of 0.003 Å. Crystal **3b** was refined as a 2-component twin with domain ratios of 0.5350(4):0.4650(4). Crystal voids in **3a** and **3b** contained unresolved highly disordered solvent molecules with partial occupancies, which were removed by the SQUEEZE method⁵ implemented in the PLATON program.⁶ The SHELXTL program suite¹ was used for molecular graphics herein. Crystal data, data collection and structure refinement details are summarized in Table S1.

Literature references:

- 1. Bruker. APEX-III. Bruker AXS Inc., Madison, Wisconsin, USA, 2019.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. *J. Appl. Cryst.* 2015, 48, 3-10. http://doi.org/10.1107/S1600576714022985
- Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination. *Acta Cryst.* 2015, A71, 3-8. http://doi.org/10.1107/S2053273314026370
- 4. Sheldrick, G. M. Crystal structure refinement with SHELXL. *Acta Cryst.* **2015**, C71, 3-8. http://doi.org/10.1107/S2053229614024218
- Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Cryst.*, 2015, C71, 9-18, http://doi.org/10.1107/S2053229614024929
- Spek, A. L. Structure validation in chemical crystallography. *Acta Cryst.*, 2009, D65, 148-155, http://doi.org/10.1107/S090744490804362X

Identification code	$2\mathbf{a} \cdot 2(CH_2Cl_2)$	$2b \cdot 2(CH_2Cl_2)$	$2\mathbf{c} \cdot \mathbf{CH}_2 \mathbf{Cl}_2$	3a ·0.5(CH ₂ Cl ₂)	3b	3c
Empirical formula	$C_{56}H_{76}Cl_8N_4Pd_2$	$C_{56}H_{76}Br_4Cl_4N_4Pd_2$	$C_{55}H_{74}Cl_2I_4N_4Pd_2$	$C_{54.5}H_{75}Cl_{3}N_{4}O_{2}Pd_{2}$	$C_{54}H_{74}Br_2N_4O_2Pd_2$	$C_{54}H_{74}I_2N_4O_2Pd_2\\$
Formula weight	1301.60	1479.44	1582.48	1137.33	1183.79	1277.77
Temperature (K)	100(2)	100(2)	100(2)	100(2)	100(2) K	120(2)
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	Pbca	Pbca	P2 ₁	C2/c	P2 ₁	C2/c
Unit cell dimensions						
a (Å)	14.2641(3)	14.6417(4)	12.5373(3)	29.8011(4)	12.4263(3)	25.3642(7)
b (Å)	19.0639(4)	19.3275(6)	15.0465(3)	13.1568(2)	14.7841(4)	12.2415(3)
c (Å)	22.6150(5)	22.4789(7)	16.1547(3)	30.6277(4)	16.2288(4)	18.7483(5)
β (°)	90	90	100.0640(10)	95.8028(6)	103.5667(10)	105.0300(10)
Volume ($Å^3$)	6149.7(2)	6361.2(3)	3000.57(11)	11947.2(3)	2898.23(13)	5622.1(3)
Ζ	4	4	2	8	2	4
Calcd density (g/cm ³)	1.406	1.545	1.752	1.265	1.357	1.510
μ (mm ⁻¹)	0.970	3.282	2.783	0.775	2.038	1.778
F(000)	2672	2960	1540	4712	1208	2560
Crystal size (mm)	0.50×0.20×0.17	0.57×0.38×0.18	$0.55 \times 0.47 \times 0.42$	0.58×0.38×0.27	0.57×0.51×0.46	0.32×0.25×0.14
θ range (°)	2.137-34.648	2.284-34.998	2.258-36.347	2.114-34.499	2.321 to 33.998°.	2.250-34.348
Index ranges	-22<=h<=22,	-18<=h<=23,	-20<=h<=20,	-47<=h<=47,	-19<=h<=19,	-40<=h<=38,
	-30<=k<=30,	-31<=k<=31,	-25<=k<=25,	-20<=k<=20,	-23<=k<=23,	0<=k<=19,
	-35<=l<=36	-36<=l<=30	-26<=l<=26	-48<=l<=48	-25<=l<=25	0<=l<=29

Table S1. Crystal data, data collection and structure refinement details

Identification code	$2a \cdot 2(CH_2Cl_2)$	$2b \cdot 2(CH_2Cl_2)$	$2\mathbf{c}\cdot \mathbf{CH}_2\mathbf{Cl}_2$	3a ·0.5(CH ₂ Cl ₂)	3b	3c
Reflections						
collected	165577	120402	220125	237674	170408	21362
independent [R _{int}]	13189 [0.0439]	13997 [0.0268]	29074 [0.0297]	25307 [0.0368]	23690 [0.0411]	21362 [-]
observed	10792	12064	28350	21126	19373	18656
Completeness to θ_{max}	1.000	0.999	0.999	1.000	0.999	
T _{max} / T _{min}	0.3859 / 0.3093	0.1649 / 0.0846	0.7471 / 0.6088	0.4376 / 0.3541	0.2720 / 0.1529	0.1649 / 0.1027
Restraints / parameters	13189 /2 / 334	13997 / 2 / 334	29074 / 3 / 631	25307 / 30 / 697	23690 / 465 / 801	21362 / 5 / 317
Goodness-of-fit on F^2	1.075	1.037	1.086	1.017	1.022	1.059
R1 / wR2 [I>2σ(I)]	0.0286 / 0.0567	0.0304 / 0.0809	0.0185 / 0.0412	0.0375 / 0.0842	0.0404 / 0.0965	0.0337 / 0.0617
R1 / wR2 (all data)	0.0411 / 0.0628	0.0371 / 0.0849	0.0197 / 0.0417	0.0484 / 0.0920	0.0565 / 0.1079	0.0436 / 0.0661
Abs. struct. param.	-	-	0.010(3)	-	0.014(8)	-
Extinction coef.	-	-	0.00128(6)	-	-	-
$\Delta \rho_{max} / \Delta \rho_{min} \ (\bar{e} \cdot {\rm \AA}^{-3})$	0.753 / -0.751	1.276 / -1.181	0.775 / -0.640	1.340 / -1.416	0.952 / -1.273	1.232 / -0.705
CCDC number	2079916	2079917	2079918	2079919	2079920	2079921

Table S1. Crystal data, data collection and structure refinement details (cont.)

The structure of 2a

Figure S34. The molecular structure of **2a**. Hydrogen atoms are omitted. Thermal ellipsoids are set to a 50% probability level. Symmetry transformation to generate equivalent atoms: (A) -x+1, -y+1, -z+1.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1)-C(1)	1.9512(12)	C(4)-C(9)	1.4070(18)	C(16)-C(21)	1.4054(18)
Pd(1)-Cl(2)	2.2737(3)	C(5)-C(6)	1.3990(19)	C(17)-C(18)	1.3950(19)
Pd(1)-Cl(1)	2.3153(3)	C(5)-C(10)	1.522(2)	C(17)-C(22)	1.520(2)
Pd(1)-Cl(1)#1	2.3976(3)	C(6)-C(7)	1.382(2)	C(18)-C(19)	1.378(2)
N(1)-C(1)	1.3565(16)	C(7)-C(8)	1.384(2)	C(19)-C(20)	1.386(2)
N(1)-C(3)	1.3894(16)	C(8)-C(9)	1.3965(19)	C(20)-C(21)	1.399(2)
N(1)-C(4)	1.4451(16)	C(9)-C(13)	1.517(2)	C(21)-C(25)	1.517(2)
C(1)-N(2)	1.3543(16)	C(10)-C(12)	1.531(2)	C(22)-C(24)	1.534(2)
N(2)-C(2)	1.3904(16)	C(10)-C(11)	1.533(2)	C(22)-C(23)	1.536(2)
N(2)-C(16)	1.4460(16)	C(13)-C(14)	1.534(2)	C(25)-C(26)	1.526(2)
C(2)-C(3)	1.3427(18)	C(13)-C(15)	1.535(2)	C(25)-C(27)	1.532(2)
C(4)-C(5)	1.3964(19)	C(16)-C(17)	1.4027(18)		

Table S2. Selected bond distances for 2a (Å).

Symmetry transformation used to generate equivalent atoms: #1 -x+1, -y+1, -z+1

Atoms	Angle	Atoms	Angle
C(1)-Pd(1)-Cl(2)	91.05(4)	C(8)-C(9)-C(4)	116.62(13)
C(1)-Pd(1)-Cl(1)	90.82(4)	C(8)-C(9)-C(13)	120.45(13)
Cl(2)-Pd(1)-Cl(1)	177.709(12)	C(4)-C(9)-C(13)	122.92(12)
C(1)-Pd(1)-Cl(1)#1	177.82(4)	C(5)-C(10)-C(12)	110.79(13)
Cl(2)-Pd(1)-Cl(1)#1	91.105(11)	C(5)-C(10)-C(11)	110.69(13)
Cl(1)-Pd(1)-Cl(1)#1	87.022(11)	C(12)-C(10)-C(11)	111.61(14)
Pd(1)-Cl(1)-Pd(1)#1	92.977(11)	C(9)-C(13)-C(14)	111.54(12)
C(1)-N(1)-C(3)	110.46(10)	C(9)-C(13)-C(15)	111.83(13)
C(1)-N(1)-C(4)	128.91(11)	C(14)-C(13)-C(15)	109.34(12)
C(3)-N(1)-C(4)	120.49(10)	C(17)-C(16)-C(21)	123.31(12)
N(2)-C(1)-N(1)	105.25(10)	C(17)-C(16)-N(2)	118.61(11)
N(2)-C(1)-Pd(1)	127.04(9)	C(21)-C(16)-N(2)	117.94(11)
N(1)-C(1)-Pd(1)	127.59(9)	C(18)-C(17)-C(16)	116.87(13)
C(1)-N(2)-C(2)	110.34(10)	C(18)-C(17)-C(22)	119.50(12)
C(1)-N(2)-C(16)	127.29(10)	C(16)-C(17)-C(22)	123.58(12)
C(2)-N(2)-C(16)	122.17(10)	C(19)-C(18)-C(17)	121.39(14)
C(3)-C(2)-N(2)	107.09(11)	C(18)-C(19)-C(20)	120.61(13)
C(2)-C(3)-N(1)	106.86(11)	C(19)-C(20)-C(21)	120.87(14)
C(5)-C(4)-C(9)	123.48(12)	C(20)-C(21)-C(16)	116.95(13)
C(5)-C(4)-N(1)	119.04(11)	C(20)-C(21)-C(25)	120.92(13)
C(9)-C(4)-N(1)	117.18(12)	C(16)-C(21)-C(25)	122.03(12)
C(4)-C(5)-C(6)	117.10(13)	C(17)-C(22)-C(24)	112.71(12)
C(4)-C(5)-C(10)	123.06(12)	C(17)-C(22)-C(23)	110.40(13)
C(6)-C(5)-C(10)	119.84(13)	C(24)-C(22)-C(23)	109.18(13)
C(7)-C(6)-C(5)	120.95(14)	C(21)-C(25)-C(26)	113.54(13)
C(6)-C(7)-C(8)	120.52(13)	C(21)-C(25)-C(27)	110.48(12)
C(7)-C(8)-C(9)	121.28(14)	C(26)-C(25)-C(27)	110.72(14)

Table S3. Selected bond angles for 2a (°).

Symmetry transformation used to generate equivalent atoms: #1 -x+1, -y+1, -z+1

Atoms	Angle	Atoms	Angle
C(3)-N(1)-C(1)-N(2)	-0.70(14)	C(4)-C(5)-C(10)-C(11)	-122.31(15)
C(4)-N(1)-C(1)-N(2)	174.96(12)	C(6)-C(5)-C(10)-C(11)	58.60(18)
C(3)-N(1)-C(1)-Pd(1)	175.58(9)	C(8)-C(9)-C(13)-C(14)	76.56(17)
C(4)-N(1)-C(1)-Pd(1)	-8.76(19)	C(4)-C(9)-C(13)-C(14)	-102.67(15)
N(1)-C(1)-N(2)-C(2)	0.29(14)	C(8)-C(9)-C(13)-C(15)	-46.24(18)

Table S4. Torsion angles for 2a (°).

		1	
Pd(1)-C(1)-N(2)-C(2)	-176.02(9)	C(4)-C(9)-C(13)-C(15)	134.54(14)
N(1)-C(1)-N(2)-C(16)	-174.58(11)	C(1)-N(2)-C(16)-C(17)	-115.18(14)
Pd(1)-C(1)-N(2)-C(16)	9.11(18)	C(2)-N(2)-C(16)-C(17)	70.51(16)
C(1)-N(2)-C(2)-C(3)	0.23(15)	C(1)-N(2)-C(16)-C(21)	69.04(17)
C(16)-N(2)-C(2)-C(3)	175.41(12)	C(2)-N(2)-C(16)-C(21)	-105.27(14)
N(2)-C(2)-C(3)-N(1)	-0.65(15)	C(21)-C(16)-C(17)-C(18)	-0.1(2)
C(1)-N(1)-C(3)-C(2)	0.86(15)	N(2)-C(16)-C(17)-C(18)	-175.69(12)
C(4)-N(1)-C(3)-C(2)	-175.22(12)	C(21)-C(16)-C(17)-C(22)	177.09(13)
C(1)-N(1)-C(4)-C(5)	82.41(17)	N(2)-C(16)-C(17)-C(22)	1.55(19)
C(3)-N(1)-C(4)-C(5)	-102.31(15)	C(16)-C(17)-C(18)-C(19)	-0.6(2)
C(1)-N(1)-C(4)-C(9)	-103.59(15)	C(22)-C(17)-C(18)-C(19)	-177.92(14)
C(3)-N(1)-C(4)-C(9)	71.68(16)	C(17)-C(18)-C(19)-C(20)	0.7(2)
C(9)-C(4)-C(5)-C(6)	-2.3(2)	C(18)-C(19)-C(20)-C(21)	-0.2(2)
N(1)-C(4)-C(5)-C(6)	171.27(12)	C(19)-C(20)-C(21)-C(16)	-0.5(2)
C(9)-C(4)-C(5)-C(10)	178.57(13)	C(19)-C(20)-C(21)-C(25)	175.88(14)
N(1)-C(4)-C(5)-C(10)	-7.83(19)	C(17)-C(16)-C(21)-C(20)	0.7(2)
C(4)-C(5)-C(6)-C(7)	0.6(2)	N(2)-C(16)-C(21)-C(20)	176.24(12)
C(10)-C(5)-C(6)-C(7)	179.75(14)	C(17)-C(16)-C(21)-C(25)	-175.67(12)
C(5)-C(6)-C(7)-C(8)	1.3(2)	N(2)-C(16)-C(21)-C(25)	-0.10(18)
C(6)-C(7)-C(8)-C(9)	-1.5(2)	C(18)-C(17)-C(22)-C(24)	-50.32(18)
C(7)-C(8)-C(9)-C(4)	-0.1(2)	C(16)-C(17)-C(22)-C(24)	132.51(14)
C(7)-C(8)-C(9)-C(13)	-179.34(14)	C(18)-C(17)-C(22)-C(23)	72.07(17)
C(5)-C(4)-C(9)-C(8)	2.05(19)	C(16)-C(17)-C(22)-C(23)	-105.10(15)
N(1)-C(4)-C(9)-C(8)	-171.66(12)	C(20)-C(21)-C(25)-C(26)	32.02(19)
C(5)-C(4)-C(9)-C(13)	-178.70(13)	C(16)-C(21)-C(25)-C(26)	-151.78(14)
N(1)-C(4)-C(9)-C(13)	7.60(18)	C(20)-C(21)-C(25)-C(27)	-93.04(17)
C(4)-C(5)-C(10)-C(12)	113.33(16)	C(16)-C(21)-C(25)-C(27)	83.15(17)
C(6)-C(5)-C(10)-C(12)	-65.76(18)		

Symmetry transformation used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

The structure of 2b

Figure S35. The molecular structure of **2b**. Hydrogen atoms are omitted. Thermal ellipsoids are set to a 50% probability level. Symmetry transformation to generate equivalent atoms: (A) -x+1, -y+1, -z+1.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1)-C(1)	1.9614(14)	C(5)-C(6)	1.398(3)	C(17)-C(22)	1.517(3)
Pd(1)-Br(2)	2.3908(2)	C(5)-C(10)	1.519(3)	C(18)-C(19)	1.381(3)
Pd(1)-Br(1)#1	2.4309(2)	C(6)-C(7)	1.381(4)	C(19)-C(20)	1.383(3)
Pd(1)-Br(1)	2.5026(2)	C(7)-C(8)	1.379(3)	C(20)-C(21)	1.397(2)
N(1)-C(1)	1.3561(19)	C(8)-C(9)	1.394(2)	C(21)-C(25)	1.516(3)
N(1)-C(3)	1.393(2)	C(9)-C(13)	1.520(3)	C(22)-C(23)	1.531(3)
N(1)-C(4)	1.442(2)	C(10)-C(12)	1.528(3)	C(22)-C(24)	1.533(3)
N(2)-C(1)	1.3575(19)	C(10)-C(11)	1.534(4)	C(25)-C(26)	1.530(3)
N(2)-C(2)	1.389(2)	C(13)-C(15)	1.539(3)	C(25)-C(27)	1.540(3)
N(2)-C(16)	1.446(2)	C(13)-C(14)	1.541(3)	Cl(1A)-C(28A)	1.760(3)
C(2)-C(3)	1.344(2)	C(16)-C(21)	1.394(2)	Cl(2A)-C(28A)	1.774(4)

Table S5. Selected bond distances for 2b (Å).

C(4)-C(9)	1.405(2)	C(16)-C(17)	1.408(2)	Cl(1B)-C(28B)	1.759(4)
C(4)-C(5)	1.406(2)	C(17)-C(18)	1.398(3)	Cl(2B)-C(28B)	1.774(5)

Symmetry transformation used to generate equivalent atoms: #1 -x+1, -y+1, -z+1

Atoms	Angle	Atoms	Angle
C(1)-Pd(1)-Br(2)	91.30(4)	C(8)-C(9)-C(4)	117.12(17)
C(1)-Pd(1)-Br(1)#1	91.22(4)	C(8)-C(9)-C(13)	119.38(17)
Br(2)-Pd(1)-Br(1)#1	176.920(8)	C(4)-C(9)-C(13)	123.46(15)
C(1)-Pd(1)-Br(1)	178.77(4)	C(5)-C(10)-C(12)	113.6(2)
Br(2)-Pd(1)-Br(1)	89.823(7)	C(5)-C(10)-C(11)	110.29(17)
Br(1)#1-Pd(1)-Br(1)	87.642(6)	C(12)-C(10)-C(11)	111.2(2)
Pd(1)#1-Br(1)-Pd(1)	92.357(7)	C(9)-C(13)-C(15)	113.12(17)
C(1)-N(1)-C(3)	110.40(13)	C(9)-C(13)-C(14)	110.17(18)
C(1)-N(1)-C(4)	127.28(12)	C(15)-C(13)-C(14)	108.93(17)
C(3)-N(1)-C(4)	122.17(13)	C(21)-C(16)-C(17)	123.59(15)
C(1)-N(2)-C(2)	110.42(13)	C(21)-C(16)-N(2)	118.91(14)
C(1)-N(2)-C(16)	129.31(13)	C(17)-C(16)-N(2)	117.18(15)
C(2)-N(2)-C(16)	120.14(13)	C(18)-C(17)-C(16)	116.32(18)
N(1)-C(1)-N(2)	105.25(12)	C(18)-C(17)-C(22)	120.25(17)
N(1)-C(1)-Pd(1)	127.20(11)	C(16)-C(17)-C(22)	123.43(16)
N(2)-C(1)-Pd(1)	127.46(11)	C(19)-C(18)-C(17)	121.48(18)
C(3)-C(2)-N(2)	107.08(14)	C(18)-C(19)-C(20)	120.51(18)
C(2)-C(3)-N(1)	106.85(14)	C(19)-C(20)-C(21)	120.9(2)
C(9)-C(4)-C(5)	122.96(15)	C(16)-C(21)-C(20)	117.21(17)
C(9)-C(4)-N(1)	118.84(14)	C(16)-C(21)-C(25)	123.21(15)
C(5)-C(4)-N(1)	118.06(15)	C(20)-C(21)-C(25)	119.57(17)
C(6)-C(5)-C(4)	116.91(18)	C(17)-C(22)-C(23)	111.71(17)
C(6)-C(5)-C(10)	121.19(18)	C(17)-C(22)-C(24)	112.07(18)
C(4)-C(5)-C(10)	121.79(16)	C(23)-C(22)-C(24)	108.75(16)
C(7)-C(6)-C(5)	121.18(19)	C(21)-C(25)-C(26)	110.93(17)
C(8)-C(7)-C(6)	120.57(18)	C(21)-C(25)-C(27)	110.98(17)
C(7)-C(8)-C(9)	121.24(19)	C(26)-C(25)-C(27)	111.18(19)

 Table S6. Selected bond angles for 2b (°).

Symmetry transformation used to generate equivalent atoms: #1 -x+1, -y+1, -z+1

Table S7. Torsion angles for **2b** (°).

Atoms	Angle	Atoms	Angle
C(3)-N(1)-C(1)-N(2)	-0.17(17)	C(6)-C(5)-C(10)-C(11)	92.8(3)
C(4)-N(1)-C(1)-N(2)	175.43(15)	C(4)-C(5)-C(10)-C(11)	-83.4(2)
C(3)-N(1)-C(1)-Pd(1)	176.49(12)	C(8)-C(9)-C(13)-C(15)	47.4(2)
C(4)-N(1)-C(1)-Pd(1)	-7.9(2)	C(4)-C(9)-C(13)-C(15)	-135.10(18)
C(2)-N(2)-C(1)-N(1)	0.74(18)	C(8)-C(9)-C(13)-C(14)	-74.7(2)
C(16)-N(2)-C(1)-N(1)	-174.96(15)	C(4)-C(9)-C(13)-C(14)	102.72(19)
C(2)-N(2)-C(1)-Pd(1)	-175.92(12)	C(1)-N(2)-C(16)-C(21)	-81.2(2)
C(16)-N(2)-C(1)-Pd(1)	8.4(2)	C(2)-N(2)-C(16)-C(21)	103.48(19)
C(1)-N(2)-C(2)-C(3)	-1.0(2)	C(1)-N(2)-C(16)-C(17)	105.05(19)
C(16)-N(2)-C(2)-C(3)	175.11(15)	C(2)-N(2)-C(16)-C(17)	-70.3(2)
N(2)-C(2)-C(3)-N(1)	0.9(2)	C(21)-C(16)-C(17)-C(18)	-1.4(2)
C(1)-N(1)-C(3)-C(2)	-0.5(2)	N(2)-C(16)-C(17)-C(18)	172.00(15)
C(4)-N(1)-C(3)-C(2)	-176.32(16)	C(21)-C(16)-C(17)-C(22)	179.42(16)
C(1)-N(1)-C(4)-C(9)	114.92(18)	N(2)-C(16)-C(17)-C(22)	-7.1(2)
C(3)-N(1)-C(4)-C(9)	-70.0(2)	C(16)-C(17)-C(18)-C(19)	0.1(3)
C(1)-N(1)-C(4)-C(5)	-69.3(2)	C(22)-C(17)-C(18)-C(19)	179.31(18)
C(3)-N(1)-C(4)-C(5)	105.84(18)	C(17)-C(18)-C(19)-C(20)	1.4(3)
C(9)-C(4)-C(5)-C(6)	-1.8(3)	C(18)-C(19)-C(20)-C(21)	-1.8(3)
N(1)-C(4)-C(5)-C(6)	-177.39(15)	C(17)-C(16)-C(21)-C(20)	1.1(3)
C(9)-C(4)-C(5)-C(10)	174.54(16)	N(2)-C(16)-C(21)-C(20)	-172.21(16)
N(1)-C(4)-C(5)-C(10)	-1.1(2)	C(17)-C(16)-C(21)-C(25)	-179.81(16)
C(4)-C(5)-C(6)-C(7)	1.1(3)	N(2)-C(16)-C(21)-C(25)	6.9(2)
C(10)-C(5)-C(6)-C(7)	-175.22(19)	C(19)-C(20)-C(21)-C(16)	0.5(3)
C(5)-C(6)-C(7)-C(8)	0.0(3)	C(19)-C(20)-C(21)-C(25)	-178.60(19)
C(6)-C(7)-C(8)-C(9)	-0.5(3)	C(18)-C(17)-C(22)-C(23)	-77.5(2)
C(7)-C(8)-C(9)-C(4)	-0.1(3)	C(16)-C(17)-C(22)-C(23)	101.6(2)
C(7)-C(8)-C(9)-C(13)	177.51(19)	C(18)-C(17)-C(22)-C(24)	44.8(2)
C(5)-C(4)-C(9)-C(8)	1.3(2)	C(16)-C(17)-C(22)-C(24)	-136.06(18)
N(1)-C(4)-C(9)-C(8)	176.86(15)	C(16)-C(21)-C(25)-C(26)	-112.7(2)
C(5)-C(4)-C(9)-C(13)	-176.22(17)	C(20)-C(21)-C(25)-C(26)	66.4(2)
N(1)-C(4)-C(9)-C(13)	-0.6(2)	C(16)-C(21)-C(25)-C(27)	123.2(2)
C(6)-C(5)-C(10)-C(12)	-32.8(3)	C(20)-C(21)-C(25)-C(27)	-57.7(2)
C(4)-C(5)-C(10)-C(12)	151.03(19)		

Symmetry transformation used to generate equivalent atoms: #1 -x+1,-y+1,-z+1

The structure of 2c

Figure S36. The molecular structure of 2c. Hydrogen atoms are omitted. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
I(1)-Pd(1)	2.6442(2)	C(5)-C(10)	1.518(3)	C(31)-C(32)	1.406(3)
I(2)-Pd(1)	2.6152(2)	C(6)-C(7)	1.380(4)	C(32)-C(33)	1.401(4)
I(3)-Pd(1)	2.5962(2)	C(7)-C(8)	1.383(4)	C(32)-C(37)	1.519(4)
I(1)-Pd(2)	2.6106(2)	C(8)-C(9)	1.399(3)	C(33)-C(34)	1.380(4)
I(2)-Pd(2)	2.6530(2)	C(9)-C(13)	1.518(4)	C(34)-C(35)	1.385(4)
I(4)-Pd(2)	2.5778(2)	C(10)-C(11)	1.532(3)	C(35)-C(36)	1.397(3)
Pd(1)-C(1)	1.994(2)	C(10)-C(12)	1.535(3)	C(36)-C(40)	1.516(3)
Pd(2)-C(28)	1.999(2)	C(13)-C(14)	1.534(4)	C(37)-C(38)	1.531(5)
N(1)-C(1)	1.365(3)	C(13)-C(15)	1.538(4)	C(37)-C(39)	1.551(5)
N(1)-C(3)	1.390(3)	C(16)-C(21)	1.402(3)	C(40)-C(41)	1.524(3)
N(1)-C(4)	1.449(3)	C(16)-C(17)	1.409(3)	C(40)-C(42)	1.533(3)
N(2)-C(1)	1.364(3)	C(17)-C(18)	1.396(3)	C(43)-C(44)	1.397(3)
N(2)-C(2)	1.393(3)	C(17)-C(22)	1.526(3)	C(43)-C(48)	1.411(3)
N(2)-C(16)	1.447(3)	C(18)-C(19)	1.384(4)	C(44)-C(45)	1.399(4)
N(3)-C(28)	1.362(3)	C(19)-C(20)	1.386(4)	C(44)-C(49)	1.514(4)
N(3)-C(30)	1.384(3)	C(20)-C(21)	1.395(3)	C(45)-C(46)	1.379(5)

Table S8.	Selected	bond	distances	for	2c ((Å)
-----------	----------	------	-----------	-----	------	----	---

N(3)-C(31)	1.441(3)	C(21)-C(25)	1.520(3)	C(46)-C(47)	1.380(5)
N(4)-C(28)	1.364(3)	C(22)-C(23)	1.531(4)	C(47)-C(48)	1.403(4)
N(4)-C(29)	1.385(3)	C(22)-C(24)	1.533(4)	C(48)-C(52)	1.518(4)
N(4)-C(43)	1.441(3)	C(25)-C(27)	1.529(4)	C(49)-C(50)	1.525(4)
C(2)-C(3)	1.350(3)	C(25)-C(26)	1.533(4)	C(49)-C(51)	1.534(4)
C(4)-C(9)	1.407(3)	C(29)-C(30)	1.351(3)	C(52)-C(53)	1.535(5)
C(4)-C(5)	1.413(3)	C(31)-C(36)	1.399(3)	C(52)-C(54)	1.536(5)
C(5)-C(6)	1.393(3)				

Table S9. Selected bond angles for $2c\ (^\circ).$

Atoms	Angle	Atoms	Angle
Pd(2)-I(1)-Pd(1)	86.662(6)	C(16)-C(17)-C(22)	123.40(19)
Pd(1)-I(2)-Pd(2)	86.388(6)	C(19)-C(18)-C(17)	121.3(2)
C(1)-Pd(1)-I(3)	88.39(6)	C(18)-C(19)-C(20)	120.3(2)
C(1)-Pd(1)-I(2)	96.79(6)	C(19)-C(20)-C(21)	121.2(2)
I(3)-Pd(1)-I(2)	173.611(8)	C(20)-C(21)-C(16)	117.2(2)
C(1)-Pd(1)-I(1)	177.61(6)	C(20)-C(21)-C(25)	119.7(2)
I(3)-Pd(1)-I(1)	90.116(7)	C(16)-C(21)-C(25)	122.99(19)
I(2)-Pd(1)-I(1)	84.579(6)	C(17)-C(22)-C(23)	113.6(2)
C(28)-Pd(2)-I(4)	91.92(6)	C(17)-C(22)-C(24)	109.77(19)
C(28)-Pd(2)-I(1)	93.43(6)	C(23)-C(22)-C(24)	109.0(2)
I(4)-Pd(2)-I(1)	174.534(8)	C(21)-C(25)-C(27)	110.5(2)
C(28)-Pd(2)-I(2)	177.70(6)	C(21)-C(25)-C(26)	111.9(2)
I(4)-Pd(2)-I(2)	90.134(7)	C(27)-C(25)-C(26)	110.5(2)
I(1)-Pd(2)-I(2)	84.496(6)	N(3)-C(28)-N(4)	104.48(17)
C(1)-N(1)-C(3)	110.45(17)	N(3)-C(28)-Pd(2)	128.88(15)
C(1)-N(1)-C(4)	126.35(17)	N(4)-C(28)-Pd(2)	126.60(15)
C(3)-N(1)-C(4)	122.96(17)	C(30)-C(29)-N(4)	106.50(19)
C(1)-N(2)-C(2)	110.88(17)	C(29)-C(30)-N(3)	107.27(19)
C(1)-N(2)-C(16)	124.70(17)	C(36)-C(31)-C(32)	123.1(2)
C(2)-N(2)-C(16)	123.11(17)	C(36)-C(31)-N(3)	118.26(19)
C(28)-N(3)-C(30)	110.68(18)	C(32)-C(31)-N(3)	118.6(2)
C(28)-N(3)-C(31)	126.97(18)	C(33)-C(32)-C(31)	117.0(2)
C(30)-N(3)-C(31)	122.34(18)	C(33)-C(32)-C(37)	119.9(2)
C(28)-N(4)-C(29)	111.06(18)	C(31)-C(32)-C(37)	123.1(2)
C(28)-N(4)-C(43)	126.89(18)	C(34)-C(33)-C(32)	121.0(2)
C(29)-N(4)-C(43)	121.94(18)	C(33)-C(34)-C(35)	120.6(2)
N(2)-C(1)-N(1)	104.72(17)	C(34)-C(35)-C(36)	120.9(2)
N(2)-C(1)-Pd(1)	125.08(14)	C(35)-C(36)-C(31)	117.3(2)
N(1)-C(1)-Pd(1)	129.57(14)	C(35)-C(36)-C(40)	121.2(2)

C(3)-C(2)-N(2)	106.53(18)	C(31)-C(36)-C(40)	121.35(19)
C(2)-C(3)-N(1)	107.37(18)	C(32)-C(37)-C(38)	112.3(3)
C(9)-C(4)-C(5)	122.88(19)	C(32)-C(37)-C(39)	110.4(2)
C(9)-C(4)-N(1)	119.1(2)	C(38)-C(37)-C(39)	110.0(3)
C(5)-C(4)-N(1)	117.81(18)	C(36)-C(40)-C(41)	113.87(19)
C(6)-C(5)-C(4)	117.0(2)	C(36)-C(40)-C(42)	108.87(18)
C(6)-C(5)-C(10)	119.9(2)	C(41)-C(40)-C(42)	110.6(2)
C(4)-C(5)-C(10)	122.99(19)	C(44)-C(43)-C(48)	123.5(2)
C(7)-C(6)-C(5)	121.4(2)	C(44)-C(43)-N(4)	118.2(2)
C(6)-C(7)-C(8)	120.4(2)	C(48)-C(43)-N(4)	118.1(2)
C(7)-C(8)-C(9)	121.4(2)	C(43)-C(44)-C(45)	116.9(2)
C(8)-C(9)-C(4)	116.8(2)	C(43)-C(44)-C(49)	122.6(2)
C(8)-C(9)-C(13)	119.0(2)	C(45)-C(44)-C(49)	120.3(2)
C(4)-C(9)-C(13)	124.0(2)	C(46)-C(45)-C(44)	121.2(3)
C(5)-C(10)-C(11)	113.4(2)	C(45)-C(46)-C(47)	120.7(3)
C(5)-C(10)-C(12)	109.8(2)	C(46)-C(47)-C(48)	121.1(3)
C(11)-C(10)-C(12)	110.7(2)	C(47)-C(48)-C(43)	116.5(3)
C(9)-C(13)-C(14)	112.7(2)	C(47)-C(48)-C(52)	119.6(3)
C(9)-C(13)-C(15)	109.0(2)	C(43)-C(48)-C(52)	123.7(2)
C(14)-C(13)-C(15)	109.2(2)	C(44)-C(49)-C(50)	111.9(3)
C(21)-C(16)-C(17)	122.96(19)	C(44)-C(49)-C(51)	109.0(2)
C(21)-C(16)-N(2)	119.82(19)	C(50)-C(49)-C(51)	111.2(3)
C(17)-C(16)-N(2)	117.23(19)	C(48)-C(52)-C(53)	114.0(3)
C(18)-C(17)-C(16)	117.0(2)	C(48)-C(52)-C(54)	109.3(3)
C(18)-C(17)-C(22)	119.5(2)	C(53)-C(52)-C(54)	108.6(3)

Table S10. Torsion angles for 2c (°).

Atoms	Angle	Atoms	Angle
C(2)-N(2)-C(1)-N(1)	-2.3(2)	C(30)-N(3)-C(28)-N(4)	0.1(2)
C(16)-N(2)-C(1)-N(1)	164.91(19)	C(31)-N(3)-C(28)-N(4)	178.84(19)
C(2)-N(2)-C(1)-Pd(1)	169.33(15)	C(30)-N(3)-C(28)-Pd(2)	177.92(17)
C(16)-N(2)-C(1)-Pd(1)	-23.4(3)	C(31)-N(3)-C(28)-Pd(2)	-3.4(3)
C(3)-N(1)-C(1)-N(2)	2.0(2)	C(29)-N(4)-C(28)-N(3)	-0.7(2)
C(4)-N(1)-C(1)-N(2)	-172.53(19)	C(43)-N(4)-C(28)-N(3)	-176.8(2)
C(3)-N(1)-C(1)-Pd(1)	-169.14(16)	C(29)-N(4)-C(28)-Pd(2)	-178.55(16)
C(4)-N(1)-C(1)-Pd(1)	16.3(3)	C(43)-N(4)-C(28)-Pd(2)	5.3(3)
C(1)-N(2)-C(2)-C(3)	1.8(2)	C(28)-N(4)-C(29)-C(30)	1.0(3)
C(16)-N(2)-C(2)-C(3)	-165.7(2)	C(43)-N(4)-C(29)-C(30)	177.3(2)
N(2)-C(2)-C(3)-N(1)	-0.5(2)	N(4)-C(29)-C(30)-N(3)	-0.9(3)

C(1)-N(1)-C(3)-C(2)	-1.0(2)	C(28)-N(3)-C(30)-C(29)	0.5(3)
C(4)-N(1)-C(3)-C(2)	173.79(19)	C(31)-N(3)-C(30)-C(29)	-178.3(2)
C(1)-N(1)-C(4)-C(9)	-117.0(2)	C(28)-N(3)-C(31)-C(36)	73.2(3)
C(3)-N(1)-C(4)-C(9)	69.1(3)	C(30)-N(3)-C(31)-C(36)	-108.2(3)
C(1)-N(1)-C(4)-C(5)	67.5(3)	C(28)-N(3)-C(31)-C(32)	-109.6(3)
C(3)-N(1)-C(4)-C(5)	-106.4(2)	C(30)-N(3)-C(31)-C(32)	69.0(3)
C(9)-C(4)-C(5)-C(6)	3.4(3)	C(36)-C(31)-C(32)-C(33)	-1.8(4)
N(1)-C(4)-C(5)-C(6)	178.73(19)	N(3)-C(31)-C(32)-C(33)	-178.9(2)
C(9)-C(4)-C(5)-C(10)	-172.7(2)	C(36)-C(31)-C(32)-C(37)	177.1(2)
N(1)-C(4)-C(5)-C(10)	2.7(3)	N(3)-C(31)-C(32)-C(37)	0.0(4)
C(4)-C(5)-C(6)-C(7)	0.1(3)	C(31)-C(32)-C(33)-C(34)	-1.0(4)
C(10)-C(5)-C(6)-C(7)	176.3(2)	C(37)-C(32)-C(33)-C(34)	-179.9(3)
C(5)-C(6)-C(7)-C(8)	-2.7(4)	C(32)-C(33)-C(34)-C(35)	2.0(4)
C(6)-C(7)-C(8)-C(9)	1.9(4)	C(33)-C(34)-C(35)-C(36)	-0.3(4)
C(7)-C(8)-C(9)-C(4)	1.3(3)	C(34)-C(35)-C(36)-C(31)	-2.3(3)
C(7)-C(8)-C(9)-C(13)	-174.3(2)	C(34)-C(35)-C(36)-C(40)	172.5(2)
C(5)-C(4)-C(9)-C(8)	-4.1(3)	C(32)-C(31)-C(36)-C(35)	3.4(3)
N(1)-C(4)-C(9)-C(8)	-179.35(19)	N(3)-C(31)-C(36)-C(35)	-179.55(19)
C(5)-C(4)-C(9)-C(13)	171.4(2)	C(32)-C(31)-C(36)-C(40)	-171.4(2)
N(1)-C(4)-C(9)-C(13)	-3.9(3)	N(3)-C(31)-C(36)-C(40)	5.7(3)
C(6)-C(5)-C(10)-C(11)	33.7(3)	C(33)-C(32)-C(37)-C(38)	-42.9(4)
C(4)-C(5)-C(10)-C(11)	-150.4(2)	C(31)-C(32)-C(37)-C(38)	138.3(3)
C(6)-C(5)-C(10)-C(12)	-90.7(3)	C(33)-C(32)-C(37)-C(39)	80.3(3)
C(4)-C(5)-C(10)-C(12)	85.3(3)	C(31)-C(32)-C(37)-C(39)	-98.5(3)
C(8)-C(9)-C(13)-C(14)	-48.9(3)	C(35)-C(36)-C(40)-C(41)	36.2(3)
C(4)-C(9)-C(13)-C(14)	135.8(2)	C(31)-C(36)-C(40)-C(41)	-149.3(2)
C(8)-C(9)-C(13)-C(15)	72.6(3)	C(35)-C(36)-C(40)-C(42)	-87.7(3)
C(4)-C(9)-C(13)-C(15)	-102.7(2)	C(31)-C(36)-C(40)-C(42)	86.9(3)
C(1)-N(2)-C(16)-C(21)	82.7(3)	C(28)-N(4)-C(43)-C(44)	73.6(3)
C(2)-N(2)-C(16)-C(21)	-111.5(2)	C(29)-N(4)-C(43)-C(44)	-102.1(3)
C(1)-N(2)-C(16)-C(17)	-97.0(2)	C(28)-N(4)-C(43)-C(48)	-111.4(3)
C(2)-N(2)-C(16)-C(17)	68.7(3)	C(29)-N(4)-C(43)-C(48)	72.9(3)
C(21)-C(16)-C(17)-C(18)	-1.7(3)	C(48)-C(43)-C(44)-C(45)	2.9(4)
N(2)-C(16)-C(17)-C(18)	178.05(19)	N(4)-C(43)-C(44)-C(45)	177.6(2)
C(21)-C(16)-C(17)-C(22)	175.6(2)	C(48)-C(43)-C(44)-C(49)	-171.4(2)
N(2)-C(16)-C(17)-C(22)	-4.6(3)	N(4)-C(43)-C(44)-C(49)	3.4(3)
C(16)-C(17)-C(18)-C(19)	0.8(3)	C(43)-C(44)-C(45)-C(46)	-1.4(4)
C(22)-C(17)-C(18)-C(19)	-176.6(2)	C(49)-C(44)-C(45)-C(46)	172.9(3)
C(17)-C(18)-C(19)-C(20)	0.7(4)	C(44)-C(45)-C(46)-C(47)	-0.1(5)
C(18)-C(19)-C(20)-C(21)	-1.4(4)	C(45)-C(46)-C(47)-C(48)	0.3(5)

		I.	
C(19)-C(20)-C(21)-C(16)	0.5(3)	C(46)-C(47)-C(48)-C(43)	1.0(4)
C(19)-C(20)-C(21)-C(25)	178.5(2)	C(46)-C(47)-C(48)-C(52)	-174.9(3)
C(17)-C(16)-C(21)-C(20)	1.0(3)	C(44)-C(43)-C(48)-C(47)	-2.7(4)
N(2)-C(16)-C(21)-C(20)	-178.68(19)	N(4)-C(43)-C(48)-C(47)	-177.4(2)
C(17)-C(16)-C(21)-C(25)	-176.8(2)	C(44)-C(43)-C(48)-C(52)	173.0(2)
N(2)-C(16)-C(21)-C(25)	3.4(3)	N(4)-C(43)-C(48)-C(52)	-1.7(3)
C(18)-C(17)-C(22)-C(23)	-46.7(3)	C(43)-C(44)-C(49)-C(50)	-139.6(3)
C(16)-C(17)-C(22)-C(23)	136.0(2)	C(45)-C(44)-C(49)-C(50)	46.4(3)
C(18)-C(17)-C(22)-C(24)	75.6(3)	C(43)-C(44)-C(49)-C(51)	97.0(3)
C(16)-C(17)-C(22)-C(24)	-101.6(2)	C(45)-C(44)-C(49)-C(51)	-77.1(4)
C(20)-C(21)-C(25)-C(27)	-76.2(3)	C(47)-C(48)-C(52)-C(53)	-43.8(4)
C(16)-C(21)-C(25)-C(27)	101.7(3)	C(43)-C(48)-C(52)-C(53)	140.7(3)
C(20)-C(21)-C(25)-C(26)	47.4(3)	C(47)-C(48)-C(52)-C(54)	78.0(4)
C(16)-C(21)-C(25)-C(26)	-134.7(2)	C(43)-C(48)-C(52)-C(54)	-97.6(3)

The structure of 3a

Figure S37. The molecular structure of one crystallographically unique molecule in **3a**. Hydrogen atoms (but hydroxy) are omitted. Thermal ellipsoids are set to a 50% probability level. Symmetry transformations to generate equivalent atoms: (A) -x+1, y, -z+1/2.

Figure S38. The molecular structure of the second crystallographically unique molecule in **3a**. The disorder of the whole complex is not shown. Hydrogen atoms (but hydroxy) are omitted. Thermal ellipsoids are set to a 50% probability level. Symmetry transformation to generate equivalent atoms: (A) -x+3/2, -y+1/2, -z+1.

Figure S39. Disorder 0.649(3):0.351(3) of the second crystallographically unique molecule in **3a**. A minor component of the disorder is shown with open lines. Hydrogen atoms are omitted.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1)-C(1)	1.9505(14)	C(4)-C(9)	1.399(2)	C(16)-C(17)	1.403(2)
Pd(1)-O(1)#1	2.0162(13)	C(4)-C(5)	1.406(3)	C(16)-C(21)	1.403(2)
Pd(1)-O(1)	2.0698(11)	C(5)-C(6)	1.400(3)	C(17)-C(18)	1.396(2)
Pd(1)-Cl(1)	2.2698(5)	C(5)-C(10)	1.514(3)	C(17)-C(22)	1.525(3)
O(1)-H(1O)	0.8400	C(6)-C(7)	1.383(3)	C(18)-C(19)	1.383(3)
N(1)-C(1)	1.3571(19)	C(7)-C(8)	1.384(3)	C(19)-C(20)	1.386(3)
N(1)-C(3)	1.389(2)	C(8)-C(9)	1.401(2)	C(20)-C(21)	1.398(3)
N(1)-C(4)	1.442(2)	C(9)-C(13)	1.519(3)	C(21)-C(25)	1.516(3)
N(2)-C(1)	1.348(2)	C(10)-C(11)	1.524(3)	C(22)-C(23)	1.529(3)
N(2)-C(2)	1.392(2)	C(10)-C(12)	1.525(3)	C(22)-C(24)	1.534(3)
N(2)-C(16)	1.444(2)	C(13)-C(15)	1.531(3)	C(25)-C(26)	1.527(3)
C(2)-C(3)	1.343(2)	C(13)-C(14)	1.533(3)	C(25)-C(27)	1.534(3)
Pd(2)-C(28)	1.9491(16)	C(36A)-C(40A)	1.525(3)	C(32B)-C(33B)	1.402(5)
Pd(2)-O(2)#2	2.0182(13)	C(37A)-C(39A)	1.522(5)	C(32B)-C(37B)	1.516(5)
Pd(2)-O(2)	2.0884(13)	C(37A)-C(38A)	1.546(4)	C(33B)-C(34B)	1.367(7)
Pd(2)-Cl(2)	2.2747(4)	C(40A)-C(42A)	1.524(4)	C(34B)-C(35B)	1.386(5)
O(2)-H(2O)	0.8400	C(40A)-C(41A)	1.539(3)	C(35B)-C(36B)	1.394(4)
N(3)-C(28)	1.354(2)	C(43A)-C(48A)	1.397(3)	C(36B)-C(40B)	1.524(4)

Table S11. Selected bond distances for 3a (Å).

N(3)-C(30B)	1.401(4)	C(43A)-C(44A)	1.403(3)	C(37B)-C(39B)	1.522(5)
N(3)-C(30A)	1.403(3)	C(44A)-C(45A)	1.396(4)	C(37B)-C(38B)	1.546(5)
N(3)-C(31B)	1.450(4)	C(44A)-C(49A)	1.520(4)	C(40B)-C(42B)	1.524(4)
N(3)-C(31A)	1.452(3)	C(45A)-C(46A)	1.386(5)	C(40B)-C(41B)	1.539(4)
C(28)-N(4B)	1.359(3)	C(46A)-C(47A)	1.390(5)	C(43B)-C(48B)	1.396(4)
C(28)-N(4A)	1.361(2)	C(47A)-C(48A)	1.400(4)	C(43B)-C(44B)	1.403(4)
N(4A)-C(29A)	1.386(3)	C(48A)-C(52A)	1.519(3)	C(44B)-C(45B)	1.395(5)
N(4A)-C(43A)	1.442(3)	C(49A)-C(51A)	1.507(4)	C(44B)-C(49B)	1.520(4)
C(29A)-C(30A)	1.331(4)	C(49A)-C(50A)	1.518(5)	C(45B)-C(46B)	1.385(5)
C(31A)-C(36A)	1.396(4)	C(52A)-C(54A)	1.524(4)	C(46B)-C(47B)	1.388(5)
C(31A)-C(32A)	1.409(3)	C(52A)-C(53A)	1.533(4)	C(47B)-C(48B)	1.399(5)
C(32A)-C(33A)	1.403(5)	N(4B)-C(29B)	1.384(4)	C(48B)-C(52B)	1.519(4)
C(32A)-C(37A)	1.517(5)	N(4B)-C(43B)	1.440(3)	C(49B)-C(51B)	1.507(5)
C(33A)-C(34A)	1.369(6)	C(29B)-C(30B)	1.329(5)	C(49B)-C(50B)	1.517(5)
C(34A)-C(35A)	1.386(5)	C(31B)-C(36B)	1.394(4)	C(52B)-C(54B)	1.523(5)
C(35A)-C(36A)	1.395(4)	C(31B)-C(32B)	1.407(4)	C(52B)-C(53B)	1.533(5)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+1/2 #2 -x+3/2, -y+1/2, -z+1

Table S12.	Selected	bond	angles	for 3a	(°).
------------	----------	------	--------	--------	------

•			
Atoms	Angle	Atoms	Angle
C(1)-Pd(1)-O(1)#1	94.33(6)	C(7)-C(6)-C(5)	121.05(18)
C(1)-Pd(1)-O(1)	174.57(6)	C(6)-C(7)-C(8)	120.44(17)
O(1)#1-Pd(1)-O(1)	80.27(6)	C(7)-C(8)-C(9)	121.30(17)
C(1)-Pd(1)-Cl(1)	95.25(5)	C(4)-C(9)-C(8)	116.73(17)
O(1)#1-Pd(1)-Cl(1)	170.30(4)	C(4)-C(9)-C(13)	122.76(16)
O(1)-Pd(1)-Cl(1)	90.13(4)	C(8)-C(9)-C(13)	120.51(16)
C(1)-Pd(1)-Pd(1)#1	132.26(5)	C(5)-C(10)-C(11)	113.54(18)
O(1)#1-Pd(1)-Pd(1)#1	44.70(3)	C(5)-C(10)-C(12)	110.11(16)
O(1)-Pd(1)-Pd(1)#1	43.25(4)	C(11)-C(10)-C(12)	110.04(18)
Cl(1)-Pd(1)-Pd(1)#1	127.288(13)	C(9)-C(13)-C(15)	111.08(16)
Pd(1)#1-O(1)-Pd(1)	92.05(5)	C(9)-C(13)-C(14)	112.53(17)
Pd(1)#1-O(1)-H(1O)	109.5	C(15)-C(13)-C(14)	110.08(17)
Pd(1)-O(1)-H(1O)	106.3	C(17)-C(16)-C(21)	123.42(16)
C(1)-N(1)-C(3)	110.67(14)	C(17)-C(16)-N(2)	118.60(15)
C(1)-N(1)-C(4)	125.64(13)	C(21)-C(16)-N(2)	117.87(15)
C(3)-N(1)-C(4)	123.66(13)	C(18)-C(17)-C(16)	116.67(17)
C(1)-N(2)-C(2)	110.76(13)	C(18)-C(17)-C(22)	120.71(17)
C(1)-N(2)-C(16)	126.58(13)	C(16)-C(17)-C(22)	122.62(15)
C(2)-N(2)-C(16)	122.45(13)	C(19)-C(18)-C(17)	121.31(19)

N(2)-C(1)-N(1)	105.00(12)	C(18)-C(19)-C(20)	120.80(18)
N(2)-C(1)-Pd(1)	129.63(11)	C(19)-C(20)-C(21)	120.46(18)
N(1)-C(1)-Pd(1)	125.32(11)	C(20)-C(21)-C(16)	117.32(18)
C(3)-C(2)-N(2)	106.81(14)	C(20)-C(21)-C(25)	120.28(17)
C(2)-C(3)-N(1)	106.75(14)	C(16)-C(21)-C(25)	122.38(16)
C(9)-C(4)-C(5)	123.50(16)	C(17)-C(22)-C(23)	111.59(16)
C(9)-C(4)-N(1)	118.45(16)	C(17)-C(22)-C(24)	112.49(17)
C(5)-C(4)-N(1)	118.01(15)	C(23)-C(22)-C(24)	110.52(17)
C(6)-C(5)-C(4)	116.92(16)	C(21)-C(25)-C(26)	112.38(18)
C(6)-C(5)-C(10)	121.18(17)	C(21)-C(25)-C(27)	110.19(19)
C(4)-C(5)-C(10)	121.87(16)	C(26)-C(25)-C(27)	110.90(19)
C(28)-Pd(2)-O(2)#2	93.91(6)	C(46A)-C(45A)-C(44A)	120.4(3)
C(28)-Pd(2)-O(2)	175.24(6)	C(45A)-C(46A)-C(47A)	120.6(4)
O(2)#2-Pd(2)-O(2)	81.97(6)	C(46A)-C(47A)-C(48A)	121.0(4)
C(28)-Pd(2)-Cl(2)	91.24(5)	C(43A)-C(48A)-C(47A)	116.9(4)
O(2)#2-Pd(2)-Cl(2)	174.20(4)	C(43A)-C(48A)-C(52A)	123.2(3)
O(2)-Pd(2)-Cl(2)	92.99(4)	C(47A)-C(48A)-C(52A)	119.9(4)
C(28)-Pd(2)-Pd(2)#2	135.70(5)	C(51A)-C(49A)-C(50A)	112.2(5)
O(2)#2-Pd(2)-Pd(2)#2	41.84(4)	C(51A)-C(49A)-C(44A)	113.6(5)
O(2)-Pd(2)-Pd(2)#2	40.13(4)	C(50A)-C(49A)-C(44A)	110.1(3)
Cl(2)-Pd(2)-Pd(2)#2	133.060(14)	C(48A)-C(52A)-C(54A)	113.3(7)
Pd(2)#2-O(2)-Pd(2)	98.03(6)	C(48A)-C(52A)-C(53A)	110.1(6)
Pd(2)#2-O(2)-H(2O)	109.5	C(54A)-C(52A)-C(53A)	110.8(9)
Pd(2)-O(2)-H(2O)	121.8	C(28)-N(4B)-C(29B)	114.2(8)
C(28)-N(3)-C(30B)	118.7(6)	C(28)-N(4B)-C(43B)	121.4(7)
C(28)-N(3)-C(30A)	106.1(3)	C(29B)-N(4B)-C(43B)	124.4(6)
C(28)-N(3)-C(31B)	131.0(6)	C(30B)-C(29B)-N(4B)	108.7(10)
C(30B)-N(3)-C(31B)	109.6(8)	C(29B)-C(30B)-N(3)	100.8(9)
C(28)-N(3)-C(31A)	120.6(3)	C(36B)-C(31B)-C(32B)	128.3(6)
C(30A)-N(3)-C(31A)	132.9(3)	C(36B)-C(31B)-N(3)	114.8(6)
N(3)-C(28)-N(4B)	97.3(3)	C(32B)-C(31B)-N(3)	116.6(6)
N(3)-C(28)-N(4A)	108.45(19)	C(33B)-C(32B)-C(31B)	112.7(6)
N(3)-C(28)-Pd(2)	126.46(13)	C(33B)-C(32B)-C(37B)	121.1(9)
N(4B)-C(28)-Pd(2)	136.2(3)	C(31B)-C(32B)-C(37B)	126.2(9)
N(4A)-C(28)-Pd(2)	125.10(17)	C(34B)-C(33B)-C(32B)	121.5(8)
C(28)-N(4A)-C(29A)	108.9(3)	C(33B)-C(34B)-C(35B)	122.9(9)
C(28)-N(4A)-C(43A)	127.1(3)	C(34B)-C(35B)-C(36B)	119.6(10)
C(29A)-N(4A)-C(43A)	123.3(3)	C(35B)-C(36B)-C(31B)	114.7(8)
C(30A)-C(29A)-N(4A)	106.4(5)	C(35B)-C(36B)-C(40B)	121.9(11)
C(29A)-C(30A)-N(3)	110.0(4)	C(31B)-C(36B)-C(40B)	123.4(11)

C(36A)-C(31A)-C(32A)	120.8(3)	C(32B)-C(37B)-C(39B)	108.9(11)
C(36A)-C(31A)-N(3)	121.8(3)	C(32B)-C(37B)-C(38B)	109.2(16)
C(32A)-C(31A)-N(3)	117.3(4)	C(39B)-C(37B)-C(38B)	112.1(19)
C(33A)-C(32A)-C(31A)	118.5(4)	C(42B)-C(40B)-C(36B)	111.6(7)
C(33A)-C(32A)-C(37A)	119.8(4)	C(42B)-C(40B)-C(41B)	114.1(16)
C(31A)-C(32A)-C(37A)	121.8(5)	C(36B)-C(40B)-C(41B)	108.0(16)
C(34A)-C(33A)-C(32A)	121.2(4)	C(48B)-C(43B)-C(44B)	123.0(7)
C(33A)-C(34A)-C(35A)	119.6(5)	C(48B)-C(43B)-N(4B)	118.4(8)
C(34A)-C(35A)-C(36A)	121.6(5)	C(44B)-C(43B)-N(4B)	118.3(9)
C(35A)-C(36A)-C(31A)	118.3(4)	C(45B)-C(44B)-C(43B)	115.3(6)
C(35A)-C(36A)-C(40A)	118.0(5)	C(45B)-C(44B)-C(49B)	124.5(6)
C(31A)-C(36A)-C(40A)	123.6(5)	C(43B)-C(44B)-C(49B)	120.0(6)
C(32A)-C(37A)-C(39A)	110.8(5)	C(46B)-C(45B)-C(44B)	123.7(6)
C(32A)-C(37A)-C(38A)	113.7(8)	C(45B)-C(46B)-C(47B)	119.2(6)
C(39A)-C(37A)-C(38A)	109.6(9)	C(46B)-C(47B)-C(48B)	119.9(7)
C(42A)-C(40A)-C(36A)	113.1(4)	C(43B)-C(48B)-C(47B)	118.9(7)
C(42A)-C(40A)-C(41A)	109.1(7)	C(43B)-C(48B)-C(52B)	122.0(8)
C(36A)-C(40A)-C(41A)	109.7(8)	C(47B)-C(48B)-C(52B)	119.0(8)
C(48A)-C(43A)-C(44A)	123.3(3)	C(51B)-C(49B)-C(50B)	107.6(10)
C(48A)-C(43A)-N(4A)	119.2(4)	C(51B)-C(49B)-C(44B)	110.3(12)
C(44A)-C(43A)-N(4A)	117.5(5)	C(50B)-C(49B)-C(44B)	108.8(7)
C(45A)-C(44A)-C(43A)	117.6(3)	C(48B)-C(52B)-C(54B)	110.7(15)
C(45A)-C(44A)-C(49A)	118.6(3)	C(48B)-C(52B)-C(53B)	109.9(12)
C(43A)-C(44A)-C(49A)	123.7(3)	C(54B)-C(52B)-C(53B)	109(2)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+1/2 #2 -x+3/2, -y+1/2, -z+1

Atoms	Angle	Atoms	Angle
C(2)-N(2)-C(1)-N(1)	0.19(18)	C(32A)-C(31A)-C(36A)-C(40A)	173.5(6)
C(16)-N(2)-C(1)-N(1)	175.01(15)	N(3)-C(31A)-C(36A)-C(40A)	-4.3(9)
C(2)-N(2)-C(1)-Pd(1)	-177.35(12)	C(33A)-C(32A)-C(37A)-C(39A)	-78.9(9)
C(16)-N(2)-C(1)-Pd(1)	-2.5(2)	C(31A)-C(32A)-C(37A)-C(39A)	100.2(9)
C(3)-N(1)-C(1)-N(2)	0.15(18)	C(33A)-C(32A)-C(37A)-C(38A)	45.1(10)
C(4)-N(1)-C(1)-N(2)	178.30(15)	C(31A)-C(32A)-C(37A)-C(38A)	-135.8(8)
C(3)-N(1)-C(1)-Pd(1)	177.83(12)	C(35A)-C(36A)-C(40A)-C(42A)	-59.0(10)
C(4)-N(1)-C(1)-Pd(1)	-4.0(2)	C(31A)-C(36A)-C(40A)-C(42A)	125.6(7)
C(1)-N(2)-C(2)-C(3)	-0.5(2)	C(35A)-C(36A)-C(40A)-C(41A)	63.0(9)
C(16)-N(2)-C(2)-C(3)	-175.53(16)	C(31A)-C(36A)-C(40A)-C(41A)	-112.4(10)

N(2)-C(2)-C(3)-N(1)	0.5(2)	C(28)-N(4A)-C(43A)-C(48A)	113.4(7)
C(1)-N(1)-C(3)-C(2)	-0.4(2)	C(29A)-N(4A)-C(43A)-C(48A)	-76.5(9)
C(4)-N(1)-C(3)-C(2)	-178.63(16)	C(28)-N(4A)-C(43A)-C(44A)	-66.3(8)
C(1)-N(1)-C(4)-C(9)	102.39(19)	C(29A)-N(4A)-C(43A)-C(44A)	103.8(8)
C(3)-N(1)-C(4)-C(9)	-79.7(2)	C(48A)-C(43A)-C(44A)-C(45A)	-4.3(6)
C(1)-N(1)-C(4)-C(5)	-79.6(2)	N(4A)-C(43A)-C(44A)-C(45A)	175.4(4)
C(3)-N(1)-C(4)-C(5)	98.4(2)	C(48A)-C(43A)-C(44A)-C(49A)	172.0(4)
C(9)-C(4)-C(5)-C(6)	1.5(2)	N(4A)-C(43A)-C(44A)-C(49A)	-8.3(6)
N(1)-C(4)-C(5)-C(6)	-176.45(15)	C(43A)-C(44A)-C(45A)-C(46A)	1.5(7)
C(9)-C(4)-C(5)-C(10)	179.42(16)	C(49A)-C(44A)-C(45A)-C(46A)	-175.0(5)
N(1)-C(4)-C(5)-C(10)	1.5(2)	C(44A)-C(45A)-C(46A)-C(47A)	1.9(9)
C(4)-C(5)-C(6)-C(7)	0.5(3)	C(45A)-C(46A)-C(47A)-C(48A)	-2.7(9)
C(10)-C(5)-C(6)-C(7)	-177.45(17)	C(44A)-C(43A)-C(48A)-C(47A)	3.5(6)
C(5)-C(6)-C(7)-C(8)	-1.4(3)	N(4A)-C(43A)-C(48A)-C(47A)	-176.2(4)
C(6)-C(7)-C(8)-C(9)	0.4(3)	C(44A)-C(43A)-C(48A)-C(52A)	-175.9(5)
C(5)-C(4)-C(9)-C(8)	-2.4(2)	N(4A)-C(43A)-C(48A)-C(52A)	4.4(7)
N(1)-C(4)-C(9)-C(8)	175.51(15)	C(46A)-C(47A)-C(48A)-C(43A)	0.1(7)
C(5)-C(4)-C(9)-C(13)	177.67(15)	C(46A)-C(47A)-C(48A)-C(52A)	179.5(6)
N(1)-C(4)-C(9)-C(13)	-4.4(2)	C(45A)-C(44A)-C(49A)-C(51A)	-45.6(7)
C(7)-C(8)-C(9)-C(4)	1.4(3)	C(43A)-C(44A)-C(49A)-C(51A)	138.2(6)
C(7)-C(8)-C(9)-C(13)	-178.66(17)	C(45A)-C(44A)-C(49A)-C(50A)	81.2(5)
C(6)-C(5)-C(10)-C(11)	-37.4(2)	C(43A)-C(44A)-C(49A)-C(50A)	-95.0(5)
C(4)-C(5)-C(10)-C(11)	144.79(18)	C(43A)-C(48A)-C(52A)-C(54A)	-136.0(9)
C(6)-C(5)-C(10)-C(12)	86.5(2)	C(47A)-C(48A)-C(52A)-C(54A)	44.7(11)
C(4)-C(5)-C(10)-C(12)	-91.3(2)	C(43A)-C(48A)-C(52A)-C(53A)	99.3(6)
C(4)-C(9)-C(13)-C(15)	101.2(2)	C(47A)-C(48A)-C(52A)-C(53A)	-80.1(6)
C(8)-C(9)-C(13)-C(15)	-78.7(2)	N(3)-C(28)-N(4B)-C(29B)	-5.9(15)
C(4)-C(9)-C(13)-C(14)	-134.86(17)	Pd(2)-C(28)-N(4B)-C(29B)	176.8(9)
C(8)-C(9)-C(13)-C(14)	45.2(2)	N(3)-C(28)-N(4B)-C(43B)	173.0(12)
C(1)-N(2)-C(16)-C(17)	99.0(2)	Pd(2)-C(28)-N(4B)-C(43B)	-4(2)
C(2)-N(2)-C(16)-C(17)	-86.8(2)	C(28)-N(4B)-C(29B)-C(30B)	5(2)
C(1)-N(2)-C(16)-C(21)	-84.6(2)	C(43B)-N(4B)-C(29B)-C(30B)	-173.7(16)
C(2)-N(2)-C(16)-C(21)	89.63(19)	N(4B)-C(29B)-C(30B)-N(3)	-2(2)
C(21)-C(16)-C(17)-C(18)	-1.2(3)	C(28)-N(3)-C(30B)-C(29B)	-2.4(18)
N(2)-C(16)-C(17)-C(18)	174.97(16)	C(31B)-N(3)-C(30B)-C(29B)	169.1(12)
C(21)-C(16)-C(17)-C(22)	178.33(16)	C(28)-N(3)-C(31B)-C(36B)	-82.0(12)
N(2)-C(16)-C(17)-C(22)	-5.5(2)	C(30B)-N(3)-C(31B)-C(36B)	107.9(14)
C(16)-C(17)-C(18)-C(19)	0.2(3)	C(28)-N(3)-C(31B)-C(32B)	92.7(12)
C(22)-C(17)-C(18)-C(19)	-179.38(19)	C(30B)-N(3)-C(31B)-C(32B)	-77.4(15)
C(17)-C(18)-C(19)-C(20)	1.0(3)	C(36B)-C(31B)-C(32B)-C(33B)	-4(2)

C(18)-C(19)-C(20)-C(21)	-1.2(3)	N(3)-C(31B)-C(32B)-C(33B)	-177.6(11)
C(19)-C(20)-C(21)-C(16)	0.2(3)	C(36B)-C(31B)-C(32B)-C(37B)	179.6(15)
C(19)-C(20)-C(21)-C(25)	-178.11(19)	N(3)-C(31B)-C(32B)-C(37B)	6(2)
C(17)-C(16)-C(21)-C(20)	1.1(3)	C(31B)-C(32B)-C(33B)-C(34B)	5.5(19)
N(2)-C(16)-C(21)-C(20)	-175.17(15)	C(37B)-C(32B)-C(33B)-C(34B)	-177.7(13)
C(17)-C(16)-C(21)-C(25)	179.30(16)	C(32B)-C(33B)-C(34B)-C(35B)	-3(2)
N(2)-C(16)-C(21)-C(25)	3.1(2)	C(33B)-C(34B)-C(35B)-C(36B)	-3(2)
C(18)-C(17)-C(22)-C(23)	34.4(3)	C(34B)-C(35B)-C(36B)-C(31B)	4.3(18)
C(16)-C(17)-C(22)-C(23)	-145.13(18)	C(34B)-C(35B)-C(36B)-C(40B)	-176.0(13)
C(18)-C(17)-C(22)-C(24)	-90.5(2)	C(32B)-C(31B)-C(36B)-C(35B)	-1(2)
C(16)-C(17)-C(22)-C(24)	90.0(2)	N(3)-C(31B)-C(36B)-C(35B)	172.9(11)
C(20)-C(21)-C(25)-C(26)	-47.2(2)	C(32B)-C(31B)-C(36B)-C(40B)	179.3(14)
C(16)-C(21)-C(25)-C(26)	134.56(19)	N(3)-C(31B)-C(36B)-C(40B)	-6.7(19)
C(20)-C(21)-C(25)-C(27)	77.0(2)	C(33B)-C(32B)-C(37B)-C(39B)	-67(2)
C(16)-C(21)-C(25)-C(27)	-101.2(2)	C(31B)-C(32B)-C(37B)-C(39B)	109.0(19)
C(30B)-N(3)-C(28)-N(4B)	5.1(13)	C(33B)-C(32B)-C(37B)-C(38B)	55(2)
C(31B)-N(3)-C(28)-N(4B)	-164.2(9)	C(31B)-C(32B)-C(37B)-C(38B)	-128(2)
C(30A)-N(3)-C(28)-N(4A)	-2.3(6)	C(35B)-C(36B)-C(40B)-C(42B)	-56(2)
C(31A)-N(3)-C(28)-N(4A)	-176.5(5)	C(31B)-C(36B)-C(40B)-C(42B)	123.6(17)
C(30B)-N(3)-C(28)-Pd(2)	-177.2(10)	C(35B)-C(36B)-C(40B)-C(41B)	70.2(19)
C(30A)-N(3)-C(28)-Pd(2)	178.0(4)	C(31B)-C(36B)-C(40B)-C(41B)	-110(2)
C(31B)-N(3)-C(28)-Pd(2)	13.4(5)	C(28)-N(4B)-C(43B)-C(48B)	112.1(14)
C(31A)-N(3)-C(28)-Pd(2)	3.8(3)	C(29B)-N(4B)-C(43B)-C(48B)	-69.1(19)
N(3)-C(28)-N(4A)-C(29A)	3.1(7)	C(28)-N(4B)-C(43B)-C(44B)	-73.8(16)
Pd(2)-C(28)-N(4A)-C(29A)	-177.2(4)	C(29B)-N(4B)-C(43B)-C(44B)	105.0(18)
N(3)-C(28)-N(4A)-C(43A)	174.4(6)	C(48B)-C(43B)-C(44B)-C(45B)	2.5(13)
Pd(2)-C(28)-N(4A)-C(43A)	-5.9(10)	N(4B)-C(43B)-C(44B)-C(45B)	-171.4(8)
C(28)-N(4A)-C(29A)-C(30A)	-2.6(9)	C(48B)-C(43B)-C(44B)-C(49B)	177.7(8)
C(43A)-N(4A)-C(29A)-C(30A)	-174.3(7)	N(4B)-C(43B)-C(44B)-C(49B)	3.8(12)
N(4A)-C(29A)-C(30A)-N(3)	1.2(10)	C(43B)-C(44B)-C(45B)-C(46B)	-1.6(15)
C(28)-N(3)-C(30A)-C(29A)	0.7(8)	C(49B)-C(44B)-C(45B)-C(46B)	-176.6(10)
C(31A)-N(3)-C(30A)-C(29A)	173.9(5)	C(44B)-C(45B)-C(46B)-C(47B)	0.4(18)
C(28)-N(3)-C(31A)-C(36A)	-80.3(6)	C(45B)-C(46B)-C(47B)-C(48B)	0.1(17)
C(30A)-N(3)-C(31A)-C(36A)	107.4(7)	C(44B)-C(43B)-C(48B)-C(47B)	-2.2(14)
C(28)-N(3)-C(31A)-C(32A)	101.9(5)	N(4B)-C(43B)-C(48B)-C(47B)	171.7(9)
C(30A)-N(3)-C(31A)-C(32A)	-70.5(8)	C(44B)-C(43B)-C(48B)-C(52B)	-178.0(11)
C(36A)-C(31A)-C(32A)-C(33A)	3.3(9)	N(4B)-C(43B)-C(48B)-C(52B)	-4.1(14)
N(3)-C(31A)-C(32A)-C(33A)	-178.8(5)	C(46B)-C(47B)-C(48B)-C(43B)	0.8(15)
C(36A)-C(31A)-C(32A)-C(37A)	-175.8(6)	C(46B)-C(47B)-C(48B)-C(52B)	176.7(12)
N(3)-C(31A)-C(32A)-C(37A)	2.1(8)	C(45B)-C(44B)-C(49B)-C(51B)	-46.0(14)

C(31A)-C(32A)-C(33A)-C(34A)	-2.1(9)	C(43B)-C(44B)-C(49B)-C(51B)	139.3(11)
C(37A)-C(32A)-C(33A)-C(34A)	177.0(6)	C(45B)-C(44B)-C(49B)-C(50B)	71.8(12)
C(32A)-C(33A)-C(34A)-C(35A)	-0.4(9)	C(43B)-C(44B)-C(49B)-C(50B)	-102.9(10)
C(33A)-C(34A)-C(35A)-C(36A)	2.0(9)	C(43B)-C(48B)-C(52B)-C(54B)	-132.1(19)
C(34A)-C(35A)-C(36A)-C(31A)	-0.8(8)	C(47B)-C(48B)-C(52B)-C(54B)	52(2)
C(34A)-C(35A)-C(36A)-C(40A)	-176.4(6)	C(43B)-C(48B)-C(52B)-C(53B)	108.0(13)
C(32A)-C(31A)-C(36A)-C(35A)	-1.9(8)	C(47B)-C(48B)-C(52B)-C(53B)	-67.8(14)
N(3)-C(31A)-C(36A)-C(35A)	-179.7(5)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+1/2; #2 -x+3/2, -y+1/2, -z+1.

The structure of 3b

Crystals of **3b** easily lose non-coordinating solvent molecules, when they are taken out of the mother liquor. A crystal that was kept without solvent for a while and presumably lost most lattice solvent molecules displayed a fast decay of reflection intensities while going from small to high θ angles. Its structure was solved in the P2₁/n space group (Fig. S40). The presence of non-coordinating solvent molecules was not detected in the crystalline lattice. The structure was publishable, although it exhibited rather high thermal motions and, therefore, a low bond precision on C-C bonds = 0.0125 Å. Some parameters are provided in Table S14.

Crystal system	Monoclinic
Space group	P2 ₁ /n
Unit cell dimensions	a = 12.6643(8) Å
	b = 14.4378(9) Å
	c = 15.6924(11) Å
	$\beta = 91.580(2)^{\circ}$
Volume	2868.2(3) Å ³
Z	2
Density (calculated)	1.371 g/cm ³
Absorption coefficient	2.059 mm ⁻¹
F(000)	1208
Crystal size	0.21 x 0.14 x 0.10 mm
Theta range for data collection	1.917 to 29.000°.
Index ranges	-17<=h<=17, -19<=k<=19, -21<=l<=21
Reflections collected	76772
Independent reflections	7617 [R(int) = 0.0753]
Observed reflections	5111
Max. and min. transmission	0.1076 and 0.0652
Data / restraints / parameters	7617 / 43 / 340
Goodness-of-fit on F^2	1.145

Table S14. Some crystal data, data collection and structure refinement details for a first crystal **3b** with poor-quality X-ray data.

Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0745, wR2 = 0.1809
R indices (all data)	R1 = 0.1160, wR2 = 0.2234
Largest diff. peak and hole	1.740 and -1.344 e⋅Å ⁻³

Figure S40. The structure of **3b** solved in the P2₁/n space group. The disorder is shown with solid and open lines. Thermal ellipsoids are set to a 50% probability level. Symmetry transformation to generate equivalent atoms: -x+1,-y+1,-z+1.

A better specimen was obtained from a mother liquor. Its structure was solved in a chiral space group $-P2_1$ – providing much better geometrical parameters (Tables S1, S15-S17, Figs. S41-S43). The entire molecule in monocrystal **3b** is disordered. The disorder is modeled over two positions **A** and **B** with the 0.7274(11):0.2726(11) ratio (Fig. S41). Disordered unresolved non-coordinating molecules located in crystal voids of **3b** were removed by the SQUEEZE method.

Figure S41. The structure of **3b**. The disorder is shown with solid and open lines. Hydrogen atoms (but hydroxy) are omitted. Thermal ellipsoids are set to a 50% probability level.

Figure S42. The structure of the major component of disorder **A**. Hydrogen atoms (but hydroxy) are omitted. Thermal ellipsoids are set to a 50% probability level.

Figure S43. The structure of the minor component of disorder **B**. Hydrogen atoms (but hydroxy) are omitted. Thermal ellipsoids are set to a 50% probability level.

Atoms	Distance	Atoms	Distance	Atoms	Distance
Pd(1A)-C(1A)	1.956(4)	C(9A)-C(13A)	1.535(7)	C(31A)-C(36A)	1.390(4)
Pd(1A)-O(2A)	2.035(4)	C(10A)-C(11A)	1.528(5)	C(31A)-C(32A)	1.393(4)
Pd(1A)-O(1A)	2.045(5)	C(10A)-C(12A)	1.529(5)	C(32A)-C(33A)	1.391(4)
Pd(1A)-Br(1A)	2.4022(8)	C(13A)-C(15A)	1.520(6)	C(32A)-C(37A)	1.526(8)
Pd(2A)-C(28A)	1.951(6)	C(13A)-C(14A)	1.521(6)	C(33A)-C(34A)	1.389(4)
Pd(2A)-O(1A)	2.038(5)	C(16A)-C(21A)	1.393(3)	C(34A)-C(35A)	1.390(4)
Pd(2A)-O(2A)	2.059(4)	C(16A)-C(17A)	1.394(3)	C(35A)-C(36A)	1.390(4)
Pd(2A)-Br(2A)	2.3926(14)	C(17A)-C(18A)	1.395(3)	C(36A)-C(40A)	1.527(10)
O(1A)-H(1C)	0.8500	C(17A)-C(22A)	1.538(9)	C(37A)-C(38A)	1.532(7)
O(2A)-H(2C)	0.8500	C(18A)-C(19A)	1.392(4)	C(37A)-C(39A)	1.532(6)
N(1A)-C(1A)	1.363(6)	C(19A)-C(20A)	1.391(4)	C(40A)-C(41A)	1.541(11)
N(1A)-C(3A)	1.385(6)	C(20A)-C(21A)	1.394(3)	C(40A)-C(42A)	1.542(10)
N(1A)-C(4A)	1.448(5)	C(21A)-C(25A)	1.510(7)	C(43A)-C(44A)	1.388(4)
C(1A)-N(2A)	1.369(6)	C(22A)-C(23A)	1.523(8)	C(43A)-C(48A)	1.388(4)
N(2A)-C(2A)	1.402(8)	C(22A)-C(24A)	1.525(8)	C(44A)-C(45A)	1.387(4)
N(2A)-C(16A)	1.446(5)	C(25A)-C(26A)	1.540(6)	C(44A)-C(49A)	1.580(12)

Table S15. Selected bond distances for 3b (Å).

C(2A)-C(3A)	1.362(7)	C(25A)-C(27A)	1.541(6)	C(45A)-C(46A)	1.386(4)
C(4A)-C(5A)	1.396(3)	N(3A)-C(28A)	1.336(9)	C(46A)-C(47A)	1.386(4)
C(4A)-C(9A)	1.398(3)	N(3A)-C(30A)	1.374(9)	C(47A)-C(48A)	1.387(4)
C(5A)-C(6A)	1.397(3)	N(3A)-C(31A)	1.462(7)	C(48A)-C(52A)	1.540(9)
C(5A)-C(10A)	1.528(6)	C(28A)-N(4A)	1.359(7)	C(49A)-C(51A)	1.507(10)
C(6A)-C(7A)	1.393(3)	N(4A)-C(29A)	1.396(9)	C(49A)-C(50A)	1.507(10)
C(7A)-C(8A)	1.392(3)	N(4A)-C(43A)	1.448(7)	C(52A)-C(54A)	1.520(7)
C(8A)-C(9A)	1.396(3)	C(29A)-C(30A)	1.345(11)	C(52A)-C(53A)	1.521(7)
Pd(1B)-C(1B)	1.956(6)	C(9B)-C(13B)	1.535(8)	C(31B)-C(36B)	1.390(4)
Pd(1B)-O(2B)	2.035(5)	C(10B)-C(11B)	1.529(6)	C(31B)-C(32B)	1.391(4)
Pd(1B)-O(1B)	2.045(6)	C(10B)-C(12B)	1.529(6)	C(32B)-C(33B)	1.390(4)
Pd(1B)-Br(1B)	2.393(3)	C(13B)-C(14B)	1.520(7)	C(32B)-C(37B)	1.525(9)
Pd(2B)-C(28B)	1.952(7)	C(13B)-C(15B)	1.520(7)	C(33B)-C(34B)	1.390(4)
Pd(2B)-O(1B)	2.037(5)	C(16B)-C(17B)	1.392(4)	C(34B)-C(35B)	1.390(4)
Pd(2B)-O(2B)	2.060(5)	C(16B)-C(21B)	1.393(4)	C(35B)-C(36B)	1.390(4)
Pd(2B)-Br(2B)	2.358(3)	C(17B)-C(18B)	1.393(4)	C(36B)-C(40B)	1.528(11)
O(1B)-H(1D)	0.8500	C(17B)-C(22B)	1.537(10)	C(37B)-C(38B)	1.531(7)
O(2B)-H(2D)	0.8500	C(18B)-C(19B)	1.392(4)	C(37B)-C(39B)	1.532(7)
N(1B)-C(1B)	1.363(7)	C(19B)-C(20B)	1.392(4)	C(40B)-C(41B)	1.542(11)
N(1B)-C(3B)	1.385(7)	C(20B)-C(21B)	1.393(4)	C(40B)-C(42B)	1.542(11)
N(1B)-C(4B)	1.448(6)	C(21B)-C(25B)	1.511(8)	C(43B)-C(44B)	1.387(4)
C(1B)-N(2B)	1.368(7)	C(22B)-C(23B)	1.523(8)	C(43B)-C(48B)	1.388(4)
N(2B)-C(2B)	1.402(8)	C(22B)-C(24B)	1.524(8)	C(44B)-C(45B)	1.387(4)
N(2B)-C(16B)	1.445(6)	C(25B)-C(27B)	1.541(7)	C(44B)-C(49B)	1.580(12)
C(2B)-C(3B)	1.362(8)	C(25B)-C(26B)	1.542(7)	C(45B)-C(46B)	1.387(4)
C(4B)-C(5B)	1.395(4)	C(28B)-N(4B)	1.359(8)	C(46B)-C(47B)	1.387(4)
C(4B)-C(9B)	1.396(4)	C(28B)-N(3B)	1.42(2)	C(47B)-C(48B)	1.387(4)
C(5B)-C(6B)	1.396(4)	N(3B)-C(30B)	1.374(9)	C(48B)-C(52B)	1.540(9)
C(5B)-C(10B)	1.528(7)	N(3B)-C(31B)	1.463(8)	C(49B)-C(51B)	1.507(11)
C(6B)-C(7B)	1.394(4)	N(4B)-C(29B)	1.396(10)	C(49B)-C(50B)	1.508(11)
C(7B)-C(8B)	1.394(4)	N(4B)-C(43B)	1.447(8)	C(52B)-C(54B)	1.521(8)
C(8B)-C(9B)	1.395(4)	C(29B)-C(30B)	1.345(11)	C(52B)-C(53B)	1.521(8)

Atoms	Angle	Atoms	Angle
C(1A)-Pd(1A)-O(2A)	93.0(4)	C(20A)-C(19A)-C(18A)	120.9(6)
C(1A)-Pd(1A)-O(1A)	171.8(4)	C(19A)-C(20A)-C(21A)	119.6(6)
O(2A)-Pd(1A)-O(1A)	79.3(4)	C(16A)-C(21A)-C(20A)	118.9(5)
C(1A)-Pd(1A)-Br(1A)	93.2(4)	C(16A)-C(21A)-C(25A)	121.4(6)
O(2A)-Pd(1A)-Br(1A)	172.93(16)	C(20A)-C(21A)-C(25A)	119.6(6)
O(1A)-Pd(1A)-Br(1A)	94.7(3)	C(23A)-C(22A)-C(24A)	108.2(8)
C(1A)-Pd(1A)-Pd(2A)	130.5(4)	C(23A)-C(22A)-C(17A)	119.6(8)
O(2A)-Pd(1A)-Pd(2A)	41.94(11)	C(24A)-C(22A)-C(17A)	108.2(12)
O(1A)-Pd(1A)-Pd(2A)	41.36(12)	C(21A)-C(25A)-C(26A)	106.5(6)
Br(1A)-Pd(1A)-Pd(2A)	133.49(5)	C(21A)-C(25A)-C(27A)	109.2(8)
C(28A)-Pd(2A)-O(1A)	99.5(4)	C(26A)-C(25A)-C(27A)	110.3(6)
C(28A)-Pd(2A)-O(2A)	176.3(3)	C(28A)-N(3A)-C(30A)	110.7(6)
O(1A)-Pd(2A)-O(2A)	78.9(3)	C(28A)-N(3A)-C(31A)	127.2(5)
C(28A)-Pd(2A)-Br(2A)	90.45(19)	C(30A)-N(3A)-C(31A)	121.6(5)
O(1A)-Pd(2A)-Br(2A)	168.2(7)	N(3A)-C(28A)-N(4A)	106.1(5)
O(2A)-Pd(2A)-Br(2A)	91.51(11)	N(3A)-C(28A)-Pd(2A)	129.0(5)
C(28A)-Pd(2A)-Pd(1A)	135.9(2)	N(4A)-C(28A)-Pd(2A)	125.0(5)
O(1A)-Pd(2A)-Pd(1A)	41.55(14)	C(28A)-N(4A)-C(29A)	109.3(6)
O(2A)-Pd(2A)-Pd(1A)	41.34(11)	C(28A)-N(4A)-C(43A)	128.8(7)
Br(2A)-Pd(2A)-Pd(1A)	131.23(6)	C(29A)-N(4A)-C(43A)	121.9(7)
Pd(2A)-O(1A)-Pd(1A)	97.09(15)	C(30A)-C(29A)-N(4A)	106.6(6)
Pd(1A)-O(2A)-Pd(2A)	96.72(15)	C(29A)-C(30A)-N(3A)	107.3(6)
C(1A)-N(1A)-C(3A)	111.5(10)	C(36A)-C(31A)-C(32A)	123.8(6)
C(1A)-N(1A)-C(4A)	122.8(7)	C(36A)-C(31A)-N(3A)	118.4(5)
C(3A)-N(1A)-C(4A)	125.4(10)	C(32A)-C(31A)-N(3A)	117.2(6)
N(1A)-C(1A)-N(2A)	103.8(6)	C(33A)-C(32A)-C(31A)	116.8(7)
N(1A)-C(1A)-Pd(1A)	129.7(6)	C(33A)-C(32A)-C(37A)	114.7(6)
N(2A)-C(1A)-Pd(1A)	125.7(6)	C(31A)-C(32A)-C(37A)	128.4(7)
C(1A)-N(2A)-C(2A)	111.3(10)	C(34A)-C(33A)-C(32A)	121.1(8)
C(1A)-N(2A)-C(16A)	124.5(9)	C(33A)-C(34A)-C(35A)	120.3(7)
C(2A)-N(2A)-C(16A)	123.4(11)	C(34A)-C(35A)-C(36A)	120.4(6)
C(3A)-C(2A)-N(2A)	105.6(13)	C(35A)-C(36A)-C(31A)	117.6(6)
C(2A)-C(3A)-N(1A)	107.2(13)	C(35A)-C(36A)-C(40A)	118.4(6)
C(5A)-C(4A)-C(9A)	122.7(9)	C(31A)-C(36A)-C(40A)	124.1(6)
C(5A)-C(4A)-N(1A)	117.9(10)	C(32A)-C(37A)-C(38A)	116.5(7)
C(9A)-C(4A)-N(1A)	119.3(10)	C(32A)-C(37A)-C(39A)	111.6(7)
C(4A)-C(5A)-C(6A)	118.4(9)	C(38A)-C(37A)-C(39A)	109.9(8)
C(4A)-C(5A)-C(10A)	120.9(10)	C(36A)-C(40A)-C(41A)	110.5(16)

Table S16. Selected bond angles for 3b (°).

C(6A)-C(5A)-C(10A)	120.5(11)	C(36A)-C(40A)-C(42A)	110.7(7)
C(7A)-C(6A)-C(5A)	119.8(9)	C(41A)-C(40A)-C(42A)	111.1(10)
C(8A)-C(7A)-C(6A)	120.7(10)	C(44A)-C(43A)-C(48A)	117.8(7)
C(7A)-C(8A)-C(9A)	120.7(9)	C(44A)-C(43A)-N(4A)	123.3(8)
C(8A)-C(9A)-C(4A)	117.6(9)	C(48A)-C(43A)-N(4A)	118.4(8)
C(8A)-C(9A)-C(13A)	119.3(8)	C(45A)-C(44A)-C(43A)	122.9(8)
C(4A)-C(9A)-C(13A)	123.1(9)	C(45A)-C(44A)-C(49A)	107.3(9)
C(5A)-C(10A)-C(11A)	111.7(13)	C(43A)-C(44A)-C(49A)	129.6(9)
C(5A)-C(10A)-C(12A)	111.5(11)	C(46A)-C(45A)-C(44A)	116.3(9)
C(11A)-C(10A)-C(12A)	110.9(8)	C(45A)-C(46A)-C(47A)	123.6(9)
C(15A)-C(13A)-C(14A)	110.6(7)	C(46A)-C(47A)-C(48A)	117.3(8)
C(15A)-C(13A)-C(9A)	108.9(8)	C(47A)-C(48A)-C(43A)	121.9(7)
C(14A)-C(13A)-C(9A)	112.0(9)	C(47A)-C(48A)-C(52A)	122.5(8)
C(21A)-C(16A)-C(17A)	122.2(5)	C(43A)-C(48A)-C(52A)	115.3(7)
C(21A)-C(16A)-N(2A)	119.4(5)	C(51A)-C(49A)-C(50A)	109.9(11)
C(17A)-C(16A)-N(2A)	118.3(5)	C(51A)-C(49A)-C(44A)	107.5(8)
C(16A)-C(17A)-C(18A)	118.0(6)	C(50A)-C(49A)-C(44A)	117.8(9)
C(16A)-C(17A)-C(22A)	125.5(6)	C(54A)-C(52A)-C(53A)	109.5(8)
C(18A)-C(17A)-C(22A)	116.4(5)	C(54A)-C(52A)-C(48A)	111.4(8)
C(19A)-C(18A)-C(17A)	120.4(6)	C(53A)-C(52A)-C(48A)	109.2(8)
C(1B)-Pd(1B)-O(2B)	106.4(13)	C(20B)-C(19B)-C(18B)	116.4(19)
C(1B)-Pd(1B)-O(1B)	170.2(18)	C(19B)-C(20B)-C(21B)	125.5(18)
O(2B)-Pd(1B)-O(1B)	82.9(7)	C(16B)-C(21B)-C(20B)	112.7(16)
C(1B)-Pd(1B)-Br(1B)	82.7(13)	C(16B)-C(21B)-C(25B)	126.0(19)
O(2B)-Pd(1B)-Br(1B)	170.9(3)	C(20B)-C(21B)-C(25B)	121.3(19)
O(1B)-Pd(1B)-Br(1B)	88.0(6)	C(23B)-C(22B)-C(24B)	108(2)
C(1B)-Pd(1B)-Pd(2B)	145.8(13)	C(23B)-C(22B)-C(17B)	95(3)
O(2B)-Pd(1B)-Pd(2B)	42.78(16)	C(24B)-C(22B)-C(17B)	113(4)
O(1B)-Pd(1B)-Pd(2B)	42.18(16)	C(21B)-C(25B)-C(27B)	126(3)
Br(1B)-Pd(1B)-Pd(2B)	128.49(16)	C(21B)-C(25B)-C(26B)	119(2)
C(28B)-Pd(2B)-O(1B)	88.1(9)	C(27B)-C(25B)-C(26B)	107.0(16)
C(28B)-Pd(2B)-O(2B)	169.8(8)	N(4B)-C(28B)-N(3B)	102.1(10)
O(1B)-Pd(2B)-O(2B)	82.5(8)	N(4B)-C(28B)-Pd(2B)	132.4(12)
C(28B)-Pd(2B)-Br(2B)	94.3(7)	N(3B)-C(28B)-Pd(2B)	125.5(12)
O(1B)-Pd(2B)-Br(2B)	174(2)	C(30B)-N(3B)-C(28B)	111.2(9)
O(2B)-Pd(2B)-Br(2B)	95.4(3)	C(30B)-N(3B)-C(31B)	123.7(12)
C(28B)-Pd(2B)-Pd(1B)	129.6(7)	C(28B)-N(3B)-C(31B)	125.1(11)
O(1B)-Pd(2B)-Pd(1B)	42.38(18)	C(28B)-N(4B)-C(29B)	112.3(11)
O(2B)-Pd(2B)-Pd(1B)	42.14(16)	C(28B)-N(4B)-C(43B)	125.3(18)
Br(2B)-Pd(2B)-Pd(1B)	133.90(19)	C(29B)-N(4B)-C(43B)	121.9(18)

Pd(2B)-O(1B)-Pd(1B)	95.4(2)	C(30B)-C(29B)-N(4B)	107.1(11)
Pd(1B)-O(2B)-Pd(2B)	95.1(2)	C(29B)-C(30B)-N(3B)	107.3(7)
C(1B)-N(1B)-C(3B)	107(3)	C(36B)-C(31B)-C(32B)	121.5(14)
C(1B)-N(1B)-C(4B)	132(2)	C(36B)-C(31B)-N(3B)	117.1(14)
C(3B)-N(1B)-C(4B)	121(3)	C(32B)-C(31B)-N(3B)	121.3(16)
N(1B)-C(1B)-N(2B)	107.2(19)	C(33B)-C(32B)-C(31B)	119.8(18)
N(1B)-C(1B)-Pd(1B)	120.1(18)	C(33B)-C(32B)-C(37B)	136.5(16)
N(2B)-C(1B)-Pd(1B)	124(2)	C(31B)-C(32B)-C(37B)	101.9(18)
C(1B)-N(2B)-C(2B)	104(3)	C(34B)-C(33B)-C(32B)	120(2)
C(1B)-N(2B)-C(16B)	126(3)	C(33B)-C(34B)-C(35B)	120(2)
C(2B)-N(2B)-C(16B)	125(3)	C(36B)-C(35B)-C(34B)	121.7(16)
C(3B)-C(2B)-N(2B)	106(4)	C(35B)-C(36B)-C(31B)	117.7(13)
C(2B)-C(3B)-N(1B)	107(4)	C(35B)-C(36B)-C(40B)	118.1(15)
C(5B)-C(4B)-C(9B)	123(2)	C(31B)-C(36B)-C(40B)	124.2(15)
C(5B)-C(4B)-N(1B)	119(3)	C(32B)-C(37B)-C(38B)	98(2)
C(9B)-C(4B)-N(1B)	118(3)	C(32B)-C(37B)-C(39B)	104(2)
C(4B)-C(5B)-C(6B)	117(3)	C(38B)-C(37B)-C(39B)	113.7(19)
C(4B)-C(5B)-C(10B)	125(3)	C(36B)-C(40B)-C(41B)	109(5)
C(6B)-C(5B)-C(10B)	118(3)	C(36B)-C(40B)-C(42B)	110.9(17)
C(7B)-C(6B)-C(5B)	123(3)	C(41B)-C(40B)-C(42B)	110(2)
C(8B)-C(7B)-C(6B)	117(3)	C(44B)-C(43B)-C(48B)	138.0(17)
C(7B)-C(8B)-C(9B)	123(3)	C(44B)-C(43B)-N(4B)	107(2)
C(8B)-C(9B)-C(4B)	117(3)	C(48B)-C(43B)-N(4B)	115(2)
C(8B)-C(9B)-C(13B)	119(3)	C(45B)-C(44B)-C(43B)	102.3(19)
C(4B)-C(9B)-C(13B)	123(3)	C(45B)-C(44B)-C(49B)	152(2)
C(5B)-C(10B)-C(11B)	115(4)	C(43B)-C(44B)-C(49B)	104(2)
C(5B)-C(10B)-C(12B)	106(3)	C(46B)-C(45B)-C(44B)	137(2)
C(11B)-C(10B)-C(12B)	111(2)	C(47B)-C(46B)-C(45B)	104(2)
C(14B)-C(13B)-C(15B)	110.8(18)	C(46B)-C(47B)-C(48B)	136(2)
C(14B)-C(13B)-C(9B)	112(3)	C(47B)-C(48B)-C(43B)	102.9(18)
C(15B)-C(13B)-C(9B)	113(3)	C(47B)-C(48B)-C(52B)	107(2)
C(17B)-C(16B)-C(21B)	127.3(16)	C(43B)-C(48B)-C(52B)	149(2)
C(17B)-C(16B)-N(2B)	115.8(18)	C(51B)-C(49B)-C(50B)	110(2)
C(21B)-C(16B)-N(2B)	116.7(19)	C(51B)-C(49B)-C(44B)	122(3)
C(16B)-C(17B)-C(18B)	114.8(17)	C(50B)-C(49B)-C(44B)	100(2)
C(16B)-C(17B)-C(22B)	110.6(18)	C(54B)-C(52B)-C(53B)	109(2)
C(18B)-C(17B)-C(22B)	131.1(18)	C(54B)-C(52B)-C(48B)	114(2)
C(19B)-C(18B)-C(17B)	123.4(19)	C(53B)-C(52B)-C(48B)	112(2)

Angle Atoms Atoms Angle C(3A)-N(1A)-C(1A)-N(2A)4.8(19) C(30A)-N(3A)-C(28A)-N(4A) 1.4(9) C(4A)-N(1A)-C(1A)-N(2A)179.0(13) C(31A)-N(3A)-C(28A)-N(4A) 173.7(7) C(3A)-N(1A)-C(1A)-Pd(1A)174.7(14) C(30A)-N(3A)-C(28A)-Pd(2A)-179.1(6) C(4A)-N(1A)-C(1A)-Pd(1A)C(31A)-N(3A)-C(28A)-Pd(2A)-11(2) -6.8(11) N(1A)-C(1A)-N(2A)-C(2A)N(3A)-C(28A)-N(4A)-C(29A) 0.0(9)-7.8(18)Pd(2A)-C(28A)-N(4A)-C(29A) Pd(1A)-C(1A)-N(2A)-C(2A)-178.2(15) -179.6(7)N(1A)-C(1A)-N(2A)-C(16A) -177.9(10)N(3A)-C(28A)-N(4A)-C(43A) 176.5(8) Pd(1A)-C(1A)-N(2A)-C(16A)11.7(15) Pd(2A)-C(28A)-N(4A)-C(43A)-3.0(12)C(1A)-N(2A)-C(2A)-C(3A)C(28A)-N(4A)-C(29A)-C(30A) 8(2) -1.4(11)C(16A)-N(2A)-C(2A)-C(3A)178.1(14) C(43A)-N(4A)-C(29A)-C(30A) -178.2(9) N(2A)-C(2A)-C(3A)-N(1A)N(4A)-C(29A)-C(30A)-N(3A) 2.2(12)-5(3)C(1A)-N(1A)-C(3A)-C(2A)0(3)C(28A)-N(3A)-C(30A)-C(29A) -2.3(12)C(4A)-N(1A)-C(3A)-C(2A)-174.1(19) C(31A)-N(3A)-C(30A)-C(29A) -175.1(8)C(1A)-N(1A)-C(4A)-C(5A)-65.5(17) C(28A)-N(3A)-C(31A)-C(36A) 107.6(8) C(3A)-N(1A)-C(4A)-C(5A)C(30A)-N(3A)-C(31A)-C(36A) 107.8(18) -80.9(9)C(1A)-N(1A)-C(4A)-C(9A)111.9(15) C(28A)-N(3A)-C(31A)-C(32A) -80.3(8)C(3A)-N(1A)-C(4A)-C(9A)-75(2) C(30A)-N(3A)-C(31A)-C(32A)91.2(9) C(9A)-C(4A)-C(5A)-C(6A)C(36A)-C(31A)-C(32A)-C(33A) -0.2(3)0.3(3) N(1A)-C(4A)-C(5A)-C(6A)177.1(8) N(3A)-C(31A)-C(32A)-C(33A) -171.3(5)C(36A)-C(31A)-C(32A)-C(37A) C(9A)-C(4A)-C(5A)-C(10A)174.7(10) -174.8(8)N(1A)-C(4A)-C(5A)-C(10A)N(3A)-C(31A)-C(32A)-C(37A) -8.0(9)13.6(9) C(4A)-C(5A)-C(6A)-C(7A)-0.3(3)C(31A)-C(32A)-C(33A)-C(34A) 0.1(3) C(10A)-C(5A)-C(6A)-C(7A)C(37A)-C(32A)-C(33A)-C(34A) -175.3(10) 175.9(8) C(5A)-C(6A)-C(7A)-C(8A) C(32A)-C(33A)-C(34A)-C(35A) -0.2(6)0.9(5)C(6A)-C(7A)-C(8A)-C(9A)C(33A)-C(34A)-C(35A)-C(36A) -0.9(7)-0.1(8)C(7A)-C(8A)-C(9A)-C(4A)C(34A)-C(35A)-C(36A)-C(31A) 0.5(7)0.3(7)C(7A)-C(8A)-C(9A)-C(13A)178.1(7) C(34A)-C(35A)-C(36A)-C(40A) -179.1(7)C(5A)-C(4A)-C(9A)-C(8A)0.2(5) C(32A)-C(31A)-C(36A)-C(35A) -0.6(6)-177.1(8) N(1A)-C(4A)-C(9A)-C(8A)N(3A)-C(31A)-C(36A)-C(35A) 170.9(5) C(5A)-C(4A)-C(9A)-C(13A)-177.4(6) C(32A)-C(31A)-C(36A)-C(40A) 179.0(7) N(3A)-C(31A)-C(36A)-C(40A) N(1A)-C(4A)-C(9A)-C(13A)5.3(9) -9.5(8)C(4A)-C(5A)-C(10A)-C(11A)152.9(9) C(33A)-C(32A)-C(37A)-C(38A) -48.1(6)C(31A)-C(32A)-C(37A)-C(38A) C(6A)-C(5A)-C(10A)-C(11A) -32.3(14) 127.1(7) C(33A)-C(32A)-C(37A)-C(39A) C(4A)-C(5A)-C(10A)-C(12A) -82.3(14) 79.2(7) C(6A)-C(5A)-C(10A)-C(12A) C(31A)-C(32A)-C(37A)-C(39A) -105.7(9) 92.5(13) C(8A)-C(9A)-C(13A)-C(15A) -79.6(10) C(35A)-C(36A)-C(40A)-C(41A) -73.1(14)C(4A)-C(9A)-C(13A)-C(15A) 98.0(9) C(31A)-C(36A)-C(40A)-C(41A) 107.3(14) 43.1(9) 50.4(10) C(8A)-C(9A)-C(13A)-C(14A)C(35A)-C(36A)-C(40A)-C(42A)

Table S17. Torsion angles for 3b (°).

C(4A)-C(9A)-C(13A)-C(14A)	-139.3(7)	C(31A)-C(36A)-C(40A)-C(42A)	-129.3(8)
C(1A)-N(2A)-C(16A)-C(21A)	-88.4(11)	C(28A)-N(4A)-C(43A)-C(44A)	87.6(10)
C(2A)-N(2A)-C(16A)-C(21A)	102.7(16)	C(29A)-N(4A)-C(43A)-C(44A)	-96.3(11)
C(1A)-N(2A)-C(16A)-C(17A)	95.5(9)	C(28A)-N(4A)-C(43A)-C(48A)	-100.8(10)
C(2A)-N(2A)-C(16A)-C(17A)	-73.4(16)	C(29A)-N(4A)-C(43A)-C(48A)	75.3(10)
C(21A)-C(16A)-C(17A)-C(18A)	0.0(3)	C(48A)-C(43A)-C(44A)-C(45A)	-0.06(19)
N(2A)-C(16A)-C(17A)-C(18A)	176.0(8)	N(4A)-C(43A)-C(44A)-C(45A)	171.6(10)
C(21A)-C(16A)-C(17A)-C(22A)	176.3(9)	C(48A)-C(43A)-C(44A)-C(49A)	174.8(11)
N(2A)-C(16A)-C(17A)-C(22A)	-7.7(10)	N(4A)-C(43A)-C(44A)-C(49A)	-13.5(11)
C(16A)-C(17A)-C(18A)-C(19A)	0.0(3)	C(43A)-C(44A)-C(45A)-C(46A)	-0.2(2)
C(22A)-C(17A)-C(18A)-C(19A)	-176.7(8)	C(49A)-C(44A)-C(45A)-C(46A)	-176.1(9)
C(17A)-C(18A)-C(19A)-C(20A)	0.1(6)	C(44A)-C(45A)-C(46A)-C(47A)	0.6(5)
C(18A)-C(19A)-C(20A)-C(21A)	0.0(8)	C(45A)-C(46A)-C(47A)-C(48A)	-0.6(6)
C(17A)-C(16A)-C(21A)-C(20A)	0.1(6)	C(46A)-C(47A)-C(48A)-C(43A)	0.3(6)
N(2A)-C(16A)-C(21A)-C(20A)	-175.9(9)	C(46A)-C(47A)-C(48A)-C(52A)	-173.1(10)
C(17A)-C(16A)-C(21A)-C(25A)	176.6(8)	C(44A)-C(43A)-C(48A)-C(47A)	0.0(4)
N(2A)-C(16A)-C(21A)-C(25A)	0.6(10)	N(4A)-C(43A)-C(48A)-C(47A)	-172.1(10)
C(19A)-C(20A)-C(21A)-C(16A)	-0.1(7)	C(44A)-C(43A)-C(48A)-C(52A)	173.9(9)
C(19A)-C(20A)-C(21A)-C(25A)	-176.6(8)	N(4A)-C(43A)-C(48A)-C(52A)	1.8(9)
C(16A)-C(17A)-C(22A)-C(23A)	-131.7(9)	C(45A)-C(44A)-C(49A)-C(51A)	-75.4(12)
C(18A)-C(17A)-C(22A)-C(23A)	44.7(10)	C(43A)-C(44A)-C(49A)-C(51A)	109.1(12)
C(16A)-C(17A)-C(22A)-C(24A)	104.0(11)	C(45A)-C(44A)-C(49A)-C(50A)	49.4(10)
C(18A)-C(17A)-C(22A)-C(24A)	-79.7(10)	C(43A)-C(44A)-C(49A)-C(50A)	-126.1(10)
C(16A)-C(21A)-C(25A)-C(26A)	-103.8(8)	C(47A)-C(48A)-C(52A)-C(54A)	-53.7(10)
C(20A)-C(21A)-C(25A)-C(26A)	72.6(9)	C(43A)-C(48A)-C(52A)-C(54A)	132.4(8)
C(16A)-C(21A)-C(25A)-C(27A)	137.1(7)	C(47A)-C(48A)-C(52A)-C(53A)	67.3(10)
C(20A)-C(21A)-C(25A)-C(27A)	-46.5(9)	C(43A)-C(48A)-C(52A)-C(53A)	-106.5(8)
C(3B)-N(1B)-C(1B)-N(2B)	-17(6)	N(4B)-C(28B)-N(3B)-C(30B)	2(3)
C(4B)-N(1B)-C(1B)-N(2B)	161(5)	Pd(2B)-C(28B)-N(3B)-C(30B)	-179.8(19)
C(3B)-N(1B)-C(1B)-Pd(1B)	-165(4)	N(4B)-C(28B)-N(3B)-C(31B)	-176(2)
C(4B)-N(1B)-C(1B)-Pd(1B)	13(8)	Pd(2B)-C(28B)-N(3B)-C(31B)	3(3)
N(1B)-C(1B)-N(2B)-C(2B)	28(5)	N(3B)-C(28B)-N(4B)-C(29B)	-2(3)
Pd(1B)-C(1B)-N(2B)-C(2B)	175(4)	Pd(2B)-C(28B)-N(4B)-C(29B)	180(2)
N(1B)-C(1B)-N(2B)-C(16B)	-176(3)	N(3B)-C(28B)-N(4B)-C(43B)	170(3)
Pd(1B)-C(1B)-N(2B)-C(16B)	-29(5)	Pd(2B)-C(28B)-N(4B)-C(43B)	-9(4)
C(1B)-N(2B)-C(2B)-C(3B)	-29(7)	C(28B)-N(4B)-C(29B)-C(30B)	1(4)
C(16B)-N(2B)-C(2B)-C(3B)	174(4)	C(43B)-N(4B)-C(29B)-C(30B)	-171(3)
N(2B)-C(2B)-C(3B)-N(1B)	19(8)	N(4B)-C(29B)-C(30B)-N(3B)	0(4)
C(1B)-N(1B)-C(3B)-C(2B)	-2(8)	C(28B)-N(3B)-C(30B)-C(29B)	-1(3)
C(4B)-N(1B)-C(3B)-C(2B)	-179(6)	C(31B)-N(3B)-C(30B)-C(29B)	176(2)

C(1B)-N(1B)-C(4B)-C(5B)	-85(6)	C(30B)-N(3B)-C(31B)-C(36B)	-69(2)
C(3B)-N(1B)-C(4B)-C(5B)	92(5)	C(28B)-N(3B)-C(31B)-C(36B)	107(2)
C(1B)-N(1B)-C(4B)-C(9B)	100(6)	C(30B)-N(3B)-C(31B)-C(32B)	109(2)
C(3B)-N(1B)-C(4B)-C(9B)	-83(6)	C(28B)-N(3B)-C(31B)-C(32B)	-74(2)
C(9B)-C(4B)-C(5B)-C(6B)	0.0(3)	C(36B)-C(31B)-C(32B)-C(33B)	0.0(3)
N(1B)-C(4B)-C(5B)-C(6B)	-174(2)	N(3B)-C(31B)-C(32B)-C(33B)	-178.5(14)
C(9B)-C(4B)-C(5B)-C(10B)	-177(3)	C(36B)-C(31B)-C(32B)-C(37B)	167.3(16)
N(1B)-C(4B)-C(5B)-C(10B)	8(3)	N(3B)-C(31B)-C(32B)-C(37B)	-11.1(19)
C(4B)-C(5B)-C(6B)-C(7B)	0.0(3)	C(31B)-C(32B)-C(33B)-C(34B)	0.1(3)
C(10B)-C(5B)-C(6B)-C(7B)	178(3)	C(37B)-C(32B)-C(33B)-C(34B)	-162(2)
C(5B)-C(6B)-C(7B)-C(8B)	0.0(7)	C(32B)-C(33B)-C(34B)-C(35B)	-0.1(7)
C(6B)-C(7B)-C(8B)-C(9B)	0.0(9)	C(33B)-C(34B)-C(35B)-C(36B)	0.2(10)
C(7B)-C(8B)-C(9B)-C(4B)	0.0(9)	C(34B)-C(35B)-C(36B)-C(31B)	-0.2(9)
C(7B)-C(8B)-C(9B)-C(13B)	170(2)	C(34B)-C(35B)-C(36B)-C(40B)	178.2(18)
C(5B)-C(4B)-C(9B)-C(8B)	0.0(7)	C(32B)-C(31B)-C(36B)-C(35B)	0.1(7)
N(1B)-C(4B)-C(9B)-C(8B)	174(2)	N(3B)-C(31B)-C(36B)-C(35B)	178.6(13)
C(5B)-C(4B)-C(9B)-C(13B)	-169(2)	C(32B)-C(31B)-C(36B)-C(40B)	-178.2(19)
N(1B)-C(4B)-C(9B)-C(13B)	5(3)	N(3B)-C(31B)-C(36B)-C(40B)	0.4(18)
C(4B)-C(5B)-C(10B)-C(11B)	131(3)	C(33B)-C(32B)-C(37B)-C(38B)	-21(2)
C(6B)-C(5B)-C(10B)-C(11B)	-46(4)	C(31B)-C(32B)-C(37B)-C(38B)	175.1(15)
C(4B)-C(5B)-C(10B)-C(12B)	-105(4)	C(33B)-C(32B)-C(37B)-C(39B)	96(2)
C(6B)-C(5B)-C(10B)-C(12B)	77(4)	C(31B)-C(32B)-C(37B)-C(39B)	-68(2)
C(8B)-C(9B)-C(13B)-C(14B)	54(3)	C(35B)-C(36B)-C(40B)-C(41B)	40(4)
C(4B)-C(9B)-C(13B)-C(14B)	-137(2)	C(31B)-C(36B)-C(40B)-C(41B)	-142(4)
C(8B)-C(9B)-C(13B)-C(15B)	-72(3)	C(35B)-C(36B)-C(40B)-C(42B)	-81(2)
C(4B)-C(9B)-C(13B)-C(15B)	97(3)	C(31B)-C(36B)-C(40B)-C(42B)	97(2)
C(1B)-N(2B)-C(16B)-C(17B)	108(3)	C(28B)-N(4B)-C(43B)-C(44B)	100(3)
C(2B)-N(2B)-C(16B)-C(17B)	-100(5)	C(29B)-N(4B)-C(43B)-C(44B)	-89(3)
C(1B)-N(2B)-C(16B)-C(21B)	-67(4)	C(28B)-N(4B)-C(43B)-C(48B)	-81(3)
C(2B)-N(2B)-C(16B)-C(21B)	85(5)	C(29B)-N(4B)-C(43B)-C(48B)	90(3)
C(21B)-C(16B)-C(17B)-C(18B)	0.0(3)	C(48B)-C(43B)-C(44B)-C(45B)	0.0(2)
N(2B)-C(16B)-C(17B)-C(18B)	-174(3)	N(4B)-C(43B)-C(44B)-C(45B)	178(2)
C(21B)-C(16B)-C(17B)-C(22B)	-161(2)	C(48B)-C(43B)-C(44B)-C(49B)	-169(2)
N(2B)-C(16B)-C(17B)-C(22B)	24(3)	N(4B)-C(43B)-C(44B)-C(49B)	9.3(19)
C(16B)-C(17B)-C(18B)-C(19B)	0.0(3)	C(43B)-C(44B)-C(45B)-C(46B)	0.0(2)
C(22B)-C(17B)-C(18B)-C(19B)	156(3)	C(49B)-C(44B)-C(45B)-C(46B)	157(5)
C(17B)-C(18B)-C(19B)-C(20B)	-0.1(7)	C(44B)-C(45B)-C(46B)-C(47B)	0.1(4)
C(18B)-C(19B)-C(20B)-C(21B)	0.1(9)	C(45B)-C(46B)-C(47B)-C(48B)	-0.1(6)
C(17B)-C(16B)-C(21B)-C(20B)	0.1(7)	C(46B)-C(47B)-C(48B)-C(43B)	0.0(6)
N(2B)-C(16B)-C(21B)-C(20B)	174(3)	C(46B)-C(47B)-C(48B)-C(52B)	171(2)

C(17B)-C(16B)-C(21B)-C(25B)	180(3)	C(44B)-C(43B)-C(48B)-C(47B)	0.0(4)
N(2B)-C(16B)-C(21B)-C(25B)	-6(3)	N(4B)-C(43B)-C(48B)-C(47B)	-178(3)
C(19B)-C(20B)-C(21B)-C(16B)	-0.2(9)	C(44B)-C(43B)-C(48B)-C(52B)	-164(5)
C(19B)-C(20B)-C(21B)-C(25B)	180(3)	N(4B)-C(43B)-C(48B)-C(52B)	18(4)
C(16B)-C(17B)-C(22B)-C(23B)	-139(2)	C(45B)-C(44B)-C(49B)-C(51B)	-74(5)
C(18B)-C(17B)-C(22B)-C(23B)	64(3)	C(43B)-C(44B)-C(49B)-C(51B)	83(3)
C(16B)-C(17B)-C(22B)-C(24B)	108(3)	C(45B)-C(44B)-C(49B)-C(50B)	47(5)
C(18B)-C(17B)-C(22B)-C(24B)	-49(4)	C(43B)-C(44B)-C(49B)-C(50B)	-156.0(19)
C(16B)-C(21B)-C(25B)-C(27B)	138(3)	C(47B)-C(48B)-C(52B)-C(54B)	-45(3)
C(20B)-C(21B)-C(25B)-C(27B)	-42(3)	C(43B)-C(48B)-C(52B)-C(54B)	118(4)
C(16B)-C(21B)-C(25B)-C(26B)	-78(3)	C(47B)-C(48B)-C(52B)-C(53B)	79(2)
C(20B)-C(21B)-C(25B)-C(26B)	102(3)	C(43B)-C(48B)-C(52B)-C(53B)	-117(4)

The structure of 3c

Figure S44. The molecular structure of **3c**. Hydrogen atoms (but hydroxy) are omitted. Atom H1 is disordered over two positions with a ratio of 0.74(5):0.26(5). Thermal ellipsoids are set to a 50% probability level. Symmetry transformation to generate equivalent atoms: -x+1, y, -z+3/2.

Atoms	Distance	Atoms	Distance	Atoms	Distance
I(1)-Pd(1)	2.5616(2)	C(4)-C(5)	1.406(3)	C(17)-C(18)	1.394(4)
Pd(1)-C(1)	1.960(2)	C(5)-C(6)	1.391(3)	C(17)-C(22A)	1.532(4)
Pd(1)-O(1)#1	2.0561(16)	C(5)-C(10)	1.525(4)	C(17)-C(22B)	1.533(4)
Pd(1)-O(1)	2.0681(16)	C(6)-C(7)	1.378(4)	C(18)-C(19)	1.384(4)
O(1)-H(1A)	0.80(2)	C(7)-C(8)	1.386(4)	C(19)-C(20)	1.375(4)
O(1)-H(1B)	0.82(3)	C(8)-C(9)	1.395(3)	C(20)-C(21)	1.397(4)
N(1)-C(1)	1.359(3)	C(9)-C(13)	1.519(3)	C(21)-C(25)	1.520(4)
N(1)-C(3)	1.392(3)	C(10)-C(11)	1.526(4)	C(22A)-C(24A)	1.529(6)
N(1)-C(4)	1.441(3)	C(10)-C(12)	1.533(4)	C(22A)-C(23A)	1.533(6)
C(1)-N(2)	1.364(3)	C(13)-C(15)	1.518(4)	C(22B)-C(24B)	1.529(6)
N(2)-C(2)	1.392(3)	C(13)-C(14)	1.536(3)	C(22B)-C(23B)	1.532(7)
N(2)-C(16)	1.441(3)	C(16)-C(17)	1.395(4)	C(25)-C(26)	1.533(4)
C(2)-C(3)	1.336(3)	C(16)-C(21)	1.406(3)	C(25)-C(27)	1.543(4)
C(4)-C(9)	1.392(3)				

Table S18. Selected bond distances for 3c (Å).

Table S19. Selected bond angles for 3c (°).

Atoms	Angle	Atoms	Angle
C(1)-Pd(1)-O(1)#1	97.05(7)	C(7)-C(8)-C(9)	120.7(3)
C(1)-Pd(1)-O(1)	175.65(8)	C(4)-C(9)-C(8)	116.8(2)
O(1)#1-Pd(1)-O(1)	79.55(7)	C(4)-C(9)-C(13)	121.2(2)
C(1)-Pd(1)-I(1)	90.93(6)	C(8)-C(9)-C(13)	121.9(2)
O(1)#1-Pd(1)-I(1)	171.49(5)	C(5)-C(10)-C(11)	113.4(2)
O(1)-Pd(1)-I(1)	92.61(5)	C(5)-C(10)-C(12)	110.8(2)
C(1)-Pd(1)-Pd(1)#1	135.92(6)	C(11)-C(10)-C(12)	108.3(2)
O(1)#1-Pd(1)-Pd(1)#1	42.16(4)	C(15)-C(13)-C(9)	113.6(2)
O(1)-Pd(1)-Pd(1)#1	41.86(4)	C(15)-C(13)-C(14)	110.6(2)
I(1)-Pd(1)-Pd(1)#1	129.334(9)	C(9)-C(13)-C(14)	108.4(2)
Pd(1)#1-O(1)-Pd(1)	95.98(7)	C(17)-C(16)-C(21)	122.9(2)
Pd(1)#1-O(1)-H(1A)	113(3)	C(17)-C(16)-N(2)	118.4(2)
Pd(1)-O(1)-H(1A)	113(3)	C(21)-C(16)-N(2)	118.6(2)
Pd(1)#1-O(1)-H(1B)	130(8)	C(18)-C(17)-C(16)	117.6(2)
Pd(1)-O(1)-H(1B)	113(8)	C(18)-C(17)-C(22A)	121.8(4)
C(1)-N(1)-C(3)	111.21(18)	C(16)-C(17)-C(22A)	119.7(3)
C(1)-N(1)-C(4)	125.79(17)	C(18)-C(17)-C(22B)	114.6(5)
C(3)-N(1)-C(4)	122.86(18)	C(16)-C(17)-C(22B)	127.6(5)
N(1)-C(1)-N(2)	104.31(18)	C(19)-C(18)-C(17)	121.0(3)
N(1)-C(1)-Pd(1)	126.57(15)	C(20)-C(19)-C(18)	119.9(3)
N(2)-C(1)-Pd(1)	129.12(16)	C(19)-C(20)-C(21)	122.0(2)

		·	
C(1)-N(2)-C(2)	110.47(19)	C(20)-C(21)-C(16)	116.5(2)
C(1)-N(2)-C(16)	126.73(19)	C(20)-C(21)-C(25)	119.6(2)
C(2)-N(2)-C(16)	122.41(19)	C(16)-C(21)-C(25)	123.9(2)
C(3)-C(2)-N(2)	107.5(2)	C(24A)-C(22A)-C(17)	111.9(4)
C(2)-C(3)-N(1)	106.5(2)	C(24A)-C(22A)-C(23A)	111.2(6)
C(9)-C(4)-C(5)	124.0(2)	C(17)-C(22A)-C(23A)	110.0(5)
C(9)-C(4)-N(1)	118.1(2)	C(24B)-C(22B)-C(23B)	111.4(8)
C(5)-C(4)-N(1)	117.8(2)	C(24B)-C(22B)-C(17)	107.9(6)
C(6)-C(5)-C(4)	116.4(2)	C(23B)-C(22B)-C(17)	116.4(6)
C(6)-C(5)-C(10)	120.7(2)	C(21)-C(25)-C(26)	111.8(2)
C(4)-C(5)-C(10)	122.9(2)	C(21)-C(25)-C(27)	110.9(2)
C(7)-C(6)-C(5)	121.2(2)	C(26)-C(25)-C(27)	108.8(2)
C(6)-C(7)-C(8)	120.8(2)		

Symmetry transformation to generate equivalent atoms: #1 -x+1, y, -z+3/2

Table S20. Torsion angles for 3c (°).

Atoms	Angle	Atoms	Angle
C(3)-N(1)-C(1)-N(2)	-1.5(2)	C(8)-C(9)-C(13)-C(15)	36.8(3)
C(4)-N(1)-C(1)-N(2)	174.3(2)	C(4)-C(9)-C(13)-C(14)	89.3(3)
C(3)-N(1)-C(1)-Pd(1)	177.75(17)	C(8)-C(9)-C(13)-C(14)	-86.6(3)
C(4)-N(1)-C(1)-Pd(1)	-6.4(3)	C(1)-N(2)-C(16)-C(17)	64.1(3)
N(1)-C(1)-N(2)-C(2)	1.2(2)	C(2)-N(2)-C(16)-C(17)	-107.9(3)
Pd(1)-C(1)-N(2)-C(2)	-178.05(17)	C(1)-N(2)-C(16)-C(21)	-120.7(2)
N(1)-C(1)-N(2)-C(16)	-171.6(2)	C(2)-N(2)-C(16)-C(21)	67.2(3)
Pd(1)-C(1)-N(2)-C(16)	9.1(3)	C(21)-C(16)-C(17)-C(18)	1.7(4)
C(1)-N(2)-C(2)-C(3)	-0.4(3)	N(2)-C(16)-C(17)-C(18)	176.6(2)
C(16)-N(2)-C(2)-C(3)	172.7(2)	C(21)-C(16)-C(17)-C(22A)	-168.1(3)
N(2)-C(2)-C(3)-N(1)	-0.5(3)	N(2)-C(16)-C(17)-C(22A)	6.8(4)
C(1)-N(1)-C(3)-C(2)	1.3(3)	C(21)-C(16)-C(17)-C(22B)	176.6(4)
C(4)-N(1)-C(3)-C(2)	-174.7(2)	N(2)-C(16)-C(17)-C(22B)	-8.5(5)
C(1)-N(1)-C(4)-C(9)	85.9(3)	C(16)-C(17)-C(18)-C(19)	-1.9(4)
C(3)-N(1)-C(4)-C(9)	-98.7(3)	C(22A)-C(17)-C(18)-C(19)	167.7(3)
C(1)-N(1)-C(4)-C(5)	-96.6(3)	C(22B)-C(17)-C(18)-C(19)	-177.5(4)
C(3)-N(1)-C(4)-C(5)	78.8(3)	C(17)-C(18)-C(19)-C(20)	0.7(4)
C(9)-C(4)-C(5)-C(6)	-1.4(3)	C(18)-C(19)-C(20)-C(21)	0.8(4)
N(1)-C(4)-C(5)-C(6)	-178.7(2)	C(19)-C(20)-C(21)-C(16)	-0.9(4)
C(9)-C(4)-C(5)-C(10)	176.4(2)	C(19)-C(20)-C(21)-C(25)	-179.5(2)
N(1)-C(4)-C(5)-C(10)	-1.0(3)	C(17)-C(16)-C(21)-C(20)	-0.3(3)
C(4)-C(5)-C(6)-C(7)	1.1(4)	N(2)-C(16)-C(21)-C(20)	-175.2(2)

C(10)-C(5)-C(6)-C(7)	-176.7(2)	C(17)-C(16)-C(21)-C(25)	178.2(2)
C(5)-C(6)-C(7)-C(8)	-0.3(4)	N(2)-C(16)-C(21)-C(25)	3.3(3)
C(6)-C(7)-C(8)-C(9)	-0.4(4)	C(18)-C(17)-C(22A)-C(24A)	-90.6(6)
C(5)-C(4)-C(9)-C(8)	0.8(3)	C(16)-C(17)-C(22A)-C(24A)	78.8(6)
N(1)-C(4)-C(9)-C(8)	178.1(2)	C(18)-C(17)-C(22A)-C(23A)	33.6(6)
C(5)-C(4)-C(9)-C(13)	-175.3(2)	C(16)-C(17)-C(22A)-C(23A)	-157.1(4)
N(1)-C(4)-C(9)-C(13)	2.0(3)	C(18)-C(17)-C(22B)-C(24B)	-73.8(8)
C(7)-C(8)-C(9)-C(4)	0.1(4)	C(16)-C(17)-C(22B)-C(24B)	111.2(7)
C(7)-C(8)-C(9)-C(13)	176.2(2)	C(18)-C(17)-C(22B)-C(23B)	52.3(10)
C(6)-C(5)-C(10)-C(11)	-39.9(3)	C(16)-C(17)-C(22B)-C(23B)	-122.8(8)
C(4)-C(5)-C(10)-C(11)	142.4(2)	C(20)-C(21)-C(25)-C(26)	-50.2(3)
C(6)-C(5)-C(10)-C(12)	82.1(3)	C(16)-C(21)-C(25)-C(26)	131.3(3)
C(4)-C(5)-C(10)-C(12)	-95.6(3)	C(20)-C(21)-C(25)-C(27)	71.5(3)
C(4)-C(9)-C(13)-C(15)	-147.3(2)	C(16)-C(21)-C(25)-C(27)	-107.0(3)

Symmetry transformation to generate equivalent atoms: #1 -x+1, y, -z+3/2

Table S21. Atom deviations from planes (\AA)

Complex	Plane	Atom deviations
2a	$Pd_2C_2Cl_4$	-0.0141(3) Pd1, 0.0141(3) Pd1#1, 0.0140(5) Cl1, -0.0140(5) Cl1#1,
		0.0107(2) Cl2, -0.0107(2) Cl2#1, -0.0038(4) C1, 0.0038(4) C1#1
2b	$Pd_2C_2Br_4$	-0.0203(4) Pd1, 0.0203(4) Pd1#1, -0.0185(5) Br1, 0.0185(5) Br1#1,
		0.0145(2) Br2, -0.0145(2) Br2#1, -0.0045(4) C1, 0.0045(4) C1#1
2c	PdCCI ₃	-0.0482(5) Pd1, -0.0106(6) I1, 0.0342(4) I2, 0.0345(4) I3,
		-0.0099(7) C1,
2c	PdCCI ₃	0.0176(5) Pd2, -0.0063(4) I1, -0.0018(6) I2, -0.0064(4) I4,
		-0.0031(7) C28
3a	PdCClO ₂	-0.0152(6) Pd1, 0.0103(4) Cl1, -0.0027(5) C1, -0.0045(5) O1,
		0.0120 (4) O1#2
3a	$Pd_2C_2Cl_2O_2$	0.0048(4) Pd2, -0.0277(5) Cl2, 0.0277(6) C28, 0.0623(12) O2,
		-0.0623(12) O2#3, -0.0048(4) Pd2#3, 0.0277(5) Cl2#3,
		-0.0277(6) C28#3
3b	PdCBrO ₂	-0.048(9) C1A, -0.011(6) Pd1A, 0.048(6) Br1A, -0.05(1) O1A,
		0.064(8) O2A
3b	PdCClO ₂	-0.077(6) C28A, -0.028(7) Pd2A, 0.088(9) Br2A, 0.11(1) O1A,
		-0.091(8) O2A
3c	PdCIO ₂	-0.0488(7) C1, -0.0061(9) Pd1, 0.0472(5) I1, -0.0549(7) O1,
		0.0626(6) O1#4

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y+1, -z+1; #2 -x+1, y, -z+1/2; #3 -x+3/2, -y+1/2, -z+1; #4 -x+1, y, -z+3/2.

Complex	Plane1	Plane2	Angle
2a	N1, C1, N2, C2, C3	Pd1, Pd1#1, Cl1, Cl1#1, Cl2, Cl2#1, C1, C1#1	61.75(4)
2a	N1, C1, N2, C2, C3	C4 C9	76.15(4)
2a	N1, C1, N2, C2, C3	C16 C21	70.17(4)
2b	N1, C1, N2, C2, C3	Pd1, Pd1#1, Br1, Br1#1, Br2, Br2#1, C1, C1#1	62.00(5)
2b	N1, C1, N2, C2, C3	C4 C9	69.82(5)
2b	N1, C1, N2, C2, C3	C16 C21	74.66(6)
2c	Pd1, I1, I2, I3, C1	Pd2, I1, I2, I4, C28	43.18(2)
2c	N1, C1, N2, C2, C3	Pd1, I1, I2, I3, C1	69.83(6)
2c	N3, C28, N4, C29, C30	Pd2, I1, I2, I4, C28	64.67(6)
2c	N1, C1, N2, C2, C3	C4 C9	68.66(8)
2c	N1, C1, N2, C2, C3	C16 C21	76.46(7)
2c	N3, C28, N4, C29, C30	C31 C36	70.51(9)
2c	N3, C28, N4, C29, C30	C43 C48	73.41(9)
3a	Pd1, Cl1, C1, O1, O1#2	Pd1#2, Cl1#2, C1#2, O1#2, O1	38.08(3)
3a	N1, C1, N2, C2, C3	Pd1, Cl1, C1, O1, O1#2	64.24(6)
3a	N1, C1, N2, C2, C3	C4 C9	79.47(5)
3 a	N1, C1, N2, C2, C3	C16 C21	86.16(5)
3a	N3, C28, N4A, C29A, C30A	Pd2, Cl2, C28, O2, O2#3, Pd2#3, Cl2#3, C28#3	58.6(2)
3 a	N3, C28, N4A, C29A, C30A	C31A C36A	76.04(2)
3 a	N3, C28, N4A, C29A, C30A	C43A C48A	71.35(2)
3b	C1A, Pd1A, Br1A, O1A, O2A	C28A, Pd2A, Br2A, O1A, O2A	26.9(4)
3 b	C1A, N1A, N2A, C2A, C3A	C1A, Pd1A, Br1A, O1A, O2A	67.1(6)
3 b	C1A, N1A, N2A, C2A, C3A	C4A C9A	71.1(7)
3 b	C1A, N1A, N2A, C2A, C3A	C16A C21A	80.65(6)
3 b	C28A, N3A, N4A, C29A, C30A	C28A, Pd2A, Br2A, O1A, O2A	81.8(4)
3 b	C28A, N3A, N4A, C29A, C30A	C31A C36A	81.6(3)
3 b	C28A, N3A, N4A, C29A, C30A	C43A C48A	81.1(4)
3c	C1, Pd1, I1, O1, O1#4	C1#4, Pd1#4, I1#4, O1#4, O1	30.80(3)
3c	N1, C1, N2, C2, C3	C1, Pd1, I1, O1, O1#4	66.14(6)
3c	N1, C1, N2, C2, C3	C4C9	82.37(9)
3c	N1, C1, N2, C2, C3	C16C21	66.15(9)

Table S22. Dihedral angles (°)

Symmetry transformation used to generate equivalent atoms: #1 -x+1, -y+1, -z+1; #2 -x+1, y, -z+1/2; #3 -x+3/2, -y+1/2, -z+1; #4 -x+1, y, -z+3/2