Supporting Information (SI)

Efficient electrocatalytic CO₂ conversion into Formate by Al_xBi_vO_z

nanorods in a wide potential window

Zhaoyu Kuang^{ab}, Chunlei Peng^{ab}, Chengjin Li^a, Heliang Yao^a, Xiaoxia Zhou^{*a} and Hangrong Chen^{*ac}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (P.R.China)

^bCenter of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049 (P. R. China)

^cSchool of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 (P. R. China)

*Corresponding author. E-mail: <u>zhouxiaoxia@mail.sic.ac.cn</u> (Xiaoxia Zhou), <u>hrchen@mail.sic.ac.cn</u> (Hangrong Chen)

Supplementary Figures:

Fig. S1 (a) Typical TEM image, (b) HRTEM image and SAED pattern (inset) of $R-Bi_2O_3$.

Fig. S2 Typical TEM image of Al₂O₃.

Fig. S3 High-resolution O 1s XPS spectrum of $Al_xBi_yO_z$ nanorods.

Fig. S4 High-resolution Al 2p XPS spectra of (a) $Al_xBi_yO_z$ nanorods and (b) Al_2O_3 .

Fig. S5 Nitrogen adsorption-desorption isotherms of $Al_xBi_yO_z$ and R- Bi_2O_3 .

Fig. S6 Current density at six fixed potentials of $Al_xBi_yO_z$ nanorods.

Fig. S7 Current density at six fixed potentials of R-Bi₂O₃.

Fig. S8 Current density at six fixed potentials of Al₂O₃.

S6 / S10

Fig. S9 (a) Faradaic efficiencies at different potentials, (b) Nitrogen adsorptiondesorption isotherm of commercial Bi₂O₃.

Fig. S10 TEM image of $Al_xBi_yO_z$ after chronoamperometric electrolysis for 10 h.

Fig. S11 CV curves at different scan rates of Al_xBi_yO_z.

Fig. S12 CV curves at different scan rates of R-Bi₂O₃.

	T 1 1			D C
Catalyst	Electrolyte	FE _{HCOO-}	Formation rate	Ref
Bi(btb) derived Bi/organic matrix	$0.5M \text{ KHCO}_3$	67% (-0.77V)	$0.1 \text{ mmol}\cdot\text{h}^{-1}\text{cm}^{-1}(-0.97 \text{ V})$	1
Bi-MOF (CAU-17)	0.1M KHCO ₃	85% (-0.8V)	/	2
Bi/Bi ₂ O ₃ nanosheets	0.5M KHCO ₃	90.4% (-0.87V)	$1.12 \text{ mmol} \cdot \text{mg}^{-1}\text{h}^{-1}\text{cm}^{-2}$ (-1.17)	7V) 3
BiPO ₄ derived Bi/Bi ₂ O ₃ nanosheets	0.5M KHCO ₃	~75% (-0.8V)	/	4
Bi nanosheets on Ag nanowire	0.5M KHCO ₃	~90% (-0.8V)	/	5
Bi nanosheets (flow cell)	0.5M KHCO ₃	91.6% (-0.8V)	/	6
Bi nanoparticles on carbon nanosheets	0.5M KHCO ₃	86% (-0.83V)	0.46 mmol·h ⁻¹ cm ⁻¹ (-0.97 V)	7
Bi nanorods@N-C nanotubes	0.1M KHCO ₃	~65% (-0.8V)	/	8
Al _x Bi _y O _z nanorods	0.1M KHCO ₃	91.5(-0.79V)	$0.1 \text{ mmol}\cdot\text{h}^{-1}\text{cm}^{-1}(-0.99 \text{ V})$ th	is work

 Table. S1 Comparison of the performances between the reported Bi-based catalysts and this work.

All potentials in this table are measured against the RHE reference.

References

- P. Lamagni, M. Miola, J. Catalano, M. S. Hvid, M. A. H. Mamakhel, M. Christensen, M. R. Madsen, H. S. Jeppesen, X. M. Hu, K. Daasbjerg, T. Skrydstrup and N. Lock, *Adv. Funct. Mater.*, 2020, **30**, 11.
- F. Li, G. H. Gu, C. Choi, P. Kolla, S. Hong, T. S. Wu, Y. L. Soo, J. Masa, S. Mukerjee, Y. S. Jung, J. S. Qiu and Z. Y. Sun, *Appl. Catal.*, *B.*, 2020, 277, 10.
- 3 D. Wu, G. Huo, W. Y. Chen, X. Z. Fu and J. L. Luo, Appl. Catal., B., 2020, 271, 8.
- 4 Y. T. Wang, Y. H. Li, J. Z. Liu, C. X. Dong, C. Q. Xiao, L. Cheng, H. L. Jiang, H. Jiang and C. Z. Li, *Angew. Chem., Int. Ed.*, 2021, **60**, 7681-7685.
- 5 J. Z. Liu, Y. H. Li, Y. T. Wang, C. Q. Xiao, M. M. Liu, X. D. Zhou, H. Jiang and C. Z. Li, *Nano Res.*, 2021.
- 6 L. C. Yi, J. X. Chen, P. Shao, J. H. Huang, X. X. Peng, J. W. Li, G. X. Wang, C. Zhang and Z. H. Wen, *Angew. Chem., Int. Ed.*, 2020, **59**, 20112-20119.
- 7 D. Wu, X. W. Wang, X. Z. Fu and J. L. Luo, Appl. Catal., B., 2021, 284, 10.
- 8 W. J. Zhang, S. Y. Yang, M. H. Jiang, Y. Hu, C. Q. Hu, X. L. Zhang and Z. Jin, *Nano Lett.*, 2021, **21**, 2650-2657.